scholarly journals Urea-based amino sugar agent clears murine liver and preserves protein fluorescence and lipophilic dyes

BioTechniques ◽  
2021 ◽  
Vol 70 (2) ◽  
pp. 72-80
Author(s):  
Michelle Hough ◽  
Michael Fenlon ◽  
Alison Glazier ◽  
Celia Short ◽  
Gerardo Esteban Fernandez ◽  
...  

Five established clearing protocols were compared with a modified and simplified method to determine an optimal clearing reagent for three-dimensionally visualizing fluorophores in the murine liver, a challenging organ to clear. We report successful clearing of whole liver lobes by modification of an established protocol (UbasM) using only Ub-1, a urea-based amino sugar reagent, in a simpler protocol that requires only a 24-h processing time. With Ub-1 alone, we observed sufficiently preserved liver tissue structure in three dimensions along with excellent preservation of fluorophore emissions from endogenous protein reporters and lipophilic tracer dyes. This streamlined technique can be used for 3D cell lineage tracing and fluoroprobe-based reporter gene expression to compare various experimental conditions.

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Ting Zhao ◽  
Shengfan Ye ◽  
Zimu Tang ◽  
Liwei Guo ◽  
Zhipeng Ma ◽  
...  

AbstractReactive oxygen species (ROS) stress has been demonstrated as potentially critical for induction and maintenance of cellular senescence, and been considered as a contributing factor in aging and in various neurological disorders including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). In response to low-level ROS stress, the expression of Δ133p53, a human p53 isoform, is upregulated to promote cell survival and protect cells from senescence by enhancing the expression of antioxidant genes. In normal conditions, the basal expression of Δ133p53 prevents human fibroblasts, T lymphocytes, and astrocytes from replicative senescence. It has been also found that brain tissues from AD and ALS patients showed decreased Δ133p53 expression. However, it is uncharacterized if Δ133p53 plays a role in brain aging. Here, we report that zebrafish Δ113p53, an ortholog of human Δ133p53, mainly expressed in some of the radial glial cells along the telencephalon ventricular zone in a full-length p53-dependent manner. EDU-labeling and cell lineage tracing showed that Δ113p53-positive cells underwent cell proliferation to contribute to the neuron renewal process. Importantly, Δ113p53M/M mutant telencephalon possessed less proliferation cells and more senescent cells compared to wild-type (WT) zebrafish telencephalon since 9-months old, which was associated with decreased antioxidant genes expression and increased level of ROS in the mutant telencephalon. More interestingly, unlike the mutant fish at 5-months old with cognition ability, Δ113p53M/M zebrafish, but not WT zebrafish, lost their learning and memory ability at 19-months old. The results demonstrate that Δ113p53 protects the brain from aging by its antioxidant function. Our finding provides evidence at the organism level to show that depletion of Δ113p53/Δ133p53 may result in long-term ROS stress, and finally lead to age-related diseases, such as AD and ALS in humans.


2013 ◽  
Vol 3 (5) ◽  
pp. 851-863 ◽  
Author(s):  
Daniel L Mace ◽  
Peter Weisdepp ◽  
Louis Gevirtzman ◽  
Thomas Boyle ◽  
Robert H Waterston

Author(s):  
Markus Rempfler ◽  
Sanjeev Kumar ◽  
Valentin Stierle ◽  
Philipp Paulitschke ◽  
Bjoern Andres ◽  
...  
Keyword(s):  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 939-939
Author(s):  
Albert Kolomansky ◽  
Naamit Deshet-Unger ◽  
Nathalie Ben-Califa ◽  
Zamzam Awida ◽  
Maria Ibrahim ◽  
...  

Background and aims: Erythropoietin (EPO) is the key regulator of red blood cell production, commonly used in clinical practice to treat certain forms of anemia. Our studies and those of others have demonstrated that EPO administration induces substantial trabecular bone loss. We proposed that EPO-induced bone loss is partially mediated by subsets of bone marrow (BM) B cells that express EPO-R. Mechanistically, EPO upregulates the surface expression of RANKL by BM B cells and augments B cell-derived osteoclastogenesis in vitro. We showed that the latter is likely mediated by pro-B cells expressing the MCS-F receptor (CD115) and capable of transdifferentiation to osteoclasts (Abstract # 1007, EHA 2017). Here we address the role of B cell-specific EPO-R in EPO-induced bone loss (i.e. at supra-physiological EPO levels). Moreover, we demonstrate, for the first time, the occurrence of B cell-derived osteoclastogenesis in vivo, a finding of critical importance in the field of osteohematology. Methods: In order to trace the B cell lineage from its earliest precursors, we used the MB1-Cre mouse line combined with either the R26R-EYFP or the EPO-Rfl/fl mice for lineage tracing and B cell-specific EPO-R knockdown, respectively. Sequential fluorescence and light microscopy were used for the demonstration of B cell-derived osteoclastogenesis in vivo. Human recombinant EPO was administered in vivo at a dose of 180IU thrice weekly for two weeks. Immunophenotyping of BM B cell populations was assessed by multi-color flow cytometry. Results: Using female MB1-Cre; EPO-Rfl/fl (cKD) mice, we found that B cell-specific EPO-R knockdown attenuated the profound EPO-induced trabecular bone loss in the proximal part of the femoral distal metaphysis (proximal BV/TV 0.034±0.012% vs 0.007±0.003% in the cKD vs control mice, p<0.05, Figure 1). Remarkably, this effect was observed despite the fact that cKD mice attained higher hemoglobin levels following EPO treatment (21.1±0.1 mg/dL vs 20.4±0.2 mg/dL in the cKD vs control mice, p<0.05). An EPO-induced increase in CD115+ Pro-B cells was observed in EPO-treated control mice but was absent in the cKD mice. The latter finding correlates with the observed bone loss and indicates that the increased number of MCSF-R-expressing pro-B cells is dependent on B cell EPO-R. Supporting the osteoclastic potential of this specific B cell subpopulation is the fact that most of the CD115+ Pro-B cells also express β3 integrin (CD61) which is essential for osteoclast differentiation and function. Using the MB1-Cre;R26R-EYFP murine model for B cell lineage tracing, we could demonstrate that some of the TRAP+/ β3 integrin+ bone lining cells were also positive for EYFP (Figure 2). This demonstrates the B cell origin of some of the osteoclasts in vivo. Conclusions: Our work highlights B cells as an important extra-erythropoietic target of EPO-EPO-R signaling that regulates bone homeostasis and might also indirectly affect EPO-stimulated erythropoietic response. The relevance and the mechanisms of the latter phenomenon merits further investigation. Importantly, we present here, for the first time, histological evidence for B cell-derived osteoclastogenesis in vivo, thus opening novel research avenues. DN and YG Equal contribution Funded by the German Israel Foundation, Grant # 01021017 to YG, DN, MR and BW and by the Israel Science Foundation (ISF) Grant No. 343/17 to DN. Disclosures Mittelman: Novartis: Honoraria, Research Funding, Speakers Bureau.


2015 ◽  
Vol 27 (1) ◽  
pp. 132
Author(s):  
L. P. Sepulveda-Rincon ◽  
D. Dube ◽  
P. Adenot ◽  
L. Laffont ◽  
S. Ruffini ◽  
...  

The first lineage specification occurs during pre-implantation mammalian development. At the blastocyst stage, 2 cell lineages can be distinguished: the inner cell mass (ICM) and the trophectoderm (TE). The exact timing when embryo cells are skewed to these lineages is not clearly determined in mammalian species. In murine embryos, it has been suggested that the first cleavage plane might be related to the embryonic-abembryonic (Em-Ab) axis at blastocyst stage. Thus, the daughter cells of the 2-cell embryo might already be predisposed to a specific cell lineage further on development. The objective of the present study was to observe how the first cleavage in bovine embryos may be related to cell lineage allocation at the blastocyst stage, using a noninvasive tracing approach. Bovine oocytes were harvested, in vitro matured, and fertilised. At the 2-cell stage, embryos were injected in one blastomere with the membrane tracer DiI. At the blastocyst stage, embryos (n = 346) were classified as orthogonal when the Em-Ab axis was orthogonally divided by the borderline between labelled and non-labelled cells; as deviant if the borderline was overlapping the Em-Ab axis; and as random when the labelled and non-labelled cells were randomly distributed. Total cell count (TCC) and the ICM/TE ratio was allowed by DNA staining with 4′,6-diamidino-2-phenylindole (DAPI) and by immunostaining of the ICM with Sox2 antibody. Analysis of variance was performed by one-way ANOVA employing IBM SPSS v21 (SPSS Inc., Chicago, IL, USA) to determine any difference between the cell lineage allocation patterns, TCC, and the ICM/TE ratio. P-values = 0.05 were considered significant. All values are reported as mean ± standard error of mean. Within 40 repetitions, the blastocyst classification was as follows: orthogonal 14.9% (±2.32, n = 56), deviant 22.2% (±2.58, n = 80), and random 62.9% (±2.64, n = 210). A significant difference was found in the incidence between the random group against the orthogonal and deviant, but not between the latter two. Regarding TCC, a significant difference was observed only between the orthogonal (99.6 ± 11.7 cells, n = 15) and deviant (135 ± 7.3 cells, n = 25) groups, but not with random embryos (116 ± 5.5 cells, n = 42). Finally, no significant difference was found among the groups concerning the ICM/TE ratio (0.43 ± 0.07 for orthogonal, n = 7; 0.54 ± 0.06 for deviant, n = 14; and 0.40 ± 0.03 for random embryos, n = 26). In conclusion, bovine embryos present a marked tendency for a random distribution of the daughter cells derived from the 2-cell blastomeres. However, around 37% of the blastocysts present a patterned cell division, where the daughter cells remain together through pre-implantation development. The effect of these cell lineage allocation patterns on implantation and further embryo development needs to be addressed.The authors acknowledge Laboratoire d'Excellence Revive (Investissement d'Avenir, ANR-10-LABX-73) and CONACyT Mexico for funding.


Author(s):  
Helen L. Moser ◽  
Adam C. Abraham ◽  
Kristen Howell ◽  
Damien Laudier ◽  
Matthias A. Zumstein ◽  
...  

Cells ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 380 ◽  
Author(s):  
Lesaffer ◽  
Verboven ◽  
Van Huffel ◽  
Moya ◽  
van Grunsven ◽  
...  

Inducible cyclization recombinase (Cre) transgenic mouse strains are powerful tools for cell lineage tracing and tissue-specific knockout experiments. However, low efficiency or leaky expression can be important pitfalls. Here, we compared the efficiency and specificity of two commonly used cholangiocyte-specific Cre drivers, the Opn-iCreERT2 and Ck19-CreERT drivers, using a tdTomato reporter strain. We found that Opn-iCreERT2 triggered recombination of the tdTomato reporter in 99.9% of all cholangiocytes while Ck19-CreERT only had 32% recombination efficiency after tamoxifen injection. In the absence of tamoxifen, recombination was also induced in 2% of cholangiocytes for the Opn-iCreERT2 driver and in 13% for the Ck19-CreERT driver. For both drivers, Cre recombination was highly specific for cholangiocytes since recombination was rare in other liver cell types. Toxic liver injury ectopically activated Opn-iCreERT2 but not Ck19-CreERT expression in hepatocytes. However, ectopic recombination in hepatocytes could be avoided by applying a three-day long wash-out period between tamoxifen treatment and toxin injection. Therefore, the Opn-iCreERT2 driver is best suited for the generation of mutant bile ducts, while the Ck19-CreERT driver has near absolute specificity for bile duct cells and is therefore favorable for lineage tracing experiments.


Sign in / Sign up

Export Citation Format

Share Document