scholarly journals Shear Strength of Steel Fiber Reinforced Reactive Powder Concrete & Geopolymer Concrete – A Comparison

Author(s):  
Aravind S Kumar ◽  
Bharati Raj J ◽  
Keerthy M Simon

Reactive Powder Concrete (RPC) is an ultra-high strength concrete composite prepared by the replacement of natural aggregates with quartz powder, silica fume and steel fibers. The use of RPC yields high strength, high ductile concrete with optimized material use and contributes to economic, sustainable and ecofriendly constructions. Past research has indicated that RPC offers significant improvement in the mechanical and physical properties owing to its homogenous composition with less defects of voids and microcracks. This leads to enhancement of ultimate load capacity of RPC members and results in superior ductility, energy absorption, tensile strain-hardening behavior, crack control capability and durability. Geo-polymer concrete (GPC) is a type of concrete that is made by reacting aluminate and silicate bearing materials with a caustic activator. Usually, waste materials such as fly ash or slag from iron and metal production are used, which helps lead to a cleaner environment. This paper attempts to review the effect of steel fibers on the shear strength of steel fiber reinforced RPC and compare the results with those of geopolymer concrete.

Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1751 ◽  
Author(s):  
Guangyao Yang ◽  
Jiangxiong Wei ◽  
Qijun Yu ◽  
Haoliang Huang ◽  
Fangxian Li

This study investigated the strength and toughness of reactive powder concrete (RPC) made with various steel fiber lengths and concrete strengths. The results indicated that among RPC samples with strength of 150 MPa, RPC reinforced with long steel fibers had the highest compressive strength, peak strength, and toughness. Among the RPC samples with strength of 270 MPa, RPC reinforced with short steel fibers had the highest compressive strength, and peak strength, while RPC reinforced with medium-length steel fibers had the highest toughness. As a result of the higher bond adhesion between fibers and ultra-high-strength RPC matrix, long steel fibers were more effective for the reinforcement of RPC with strength of 150 MPa, while short steel fibers were more effective for the reinforcement of RPC with strength of 270 MPa.


2011 ◽  
Vol 368-373 ◽  
pp. 436-440
Author(s):  
Chun Ming Song ◽  
Ming Yang Wang ◽  
De Rong Wang

In order to get mechanical properties and anti-explosion capability parameters, some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. The model tests are also carried out on RPC shelter plate under contact explosion, the most important parameter to express anti-explosion capability,i.e. compression coefficient of the material, is obtained by above experiments and theory study, the results of tests show RPC with steel fiber has very high strength and anti-explosion capability, its compressive strength and anti-explosion capability are about six and three times higher than those of C30 concrete respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Baek-Il Bae ◽  
Hyun-Ki Choi ◽  
Bong-Seop Lee ◽  
Chang-Hoon Bang

Although mechanical properties of concrete under uniaxial compression are important to design concrete structure, current design codes or other empirical equations have clear limitation on the prediction of mechanical properties. Various types of fiber-reinforced reactive powder concrete matrix were tested for making more usable and accurate estimation equations for mechanical properties for ultra high strength concrete. Investigated matrix has compressive strength ranged from 30 MPa to 200 MPa. Ultra high strength concrete was made by means of reactive powder concrete. Preventing brittle failure of this type of matrix, steel fibers were used. The volume fraction of steel fiber ranged from 0 to 2%. From the test results, steel fibers significantly increase the ductility, strength and stiffness of ultra high strength matrix. They are quantified with previously conducted researches about material properties of concrete under uniaxial loading. Applicability of estimation equations for mechanical properties of concrete was evaluated with test results of this study. From the evaluation, regression analysis was carried out, and new estimation equations were proposed. And these proposed equations were applied into stress-strain relation which was developed by previous research. Ascending part, which was affected by proposed equations of this study directly, well fitted into experimental results.


2010 ◽  
Vol 34-35 ◽  
pp. 1441-1444 ◽  
Author(s):  
Ju Zhang ◽  
Chang Wang Yan ◽  
Jin Qing Jia

This paper investigates the compressive strength and splitting tensile strength of ultra high strength concrete containing steel fiber. The steel fibers were added at the volume fractions of 0%, 0.5%, 0.75%, 1.0% and 1.5%. The compressive strength of the steel fiber reinforced ultra high strength concrete (SFRC) reached a maximum at 0.75% volume fraction, being a 15.5% improvement over the UHSC. The splitting tensile strength of the SFRC improved with increasing the volume fraction, achieving 91.9% improvements at 1.5% volume fraction. Strength models were established to predict the compressive and splitting tensile strengths of the SFRC. The models give predictions matching the measurements. Conclusions can be drawn that the marked brittleness with low tensile strength and strain capacities of ultra high strength concrete (UHSC) can be overcome by the addition of steel fibers.


2011 ◽  
Vol 413 ◽  
pp. 270-276 ◽  
Author(s):  
Wen Zhong Zheng ◽  
Hai Yan Li ◽  
Ying Wang ◽  
Heng Yan Xie

87 prismatic flexural steel fiber-reinforced reactive powder concrete (RPC) specimens with the size of 40mm×40mm×160mm were tested as well as 87 dumbbell-shaped axis tensile RPC specimens after being exposed to different high temperatures. The effect of steel fiber content and heating temperature on the flexural and tensile strength of steel fiber-reinforced RPC was analyzed. With the steel fiber content increasing, the flexural and tensile strength of steel fiber-reinforced RPC after high temperature improve significantly, and they increase first and then decrease with the heating temperature elevated, and the critical temperatures are 200¡æ and 120¡æ, respectively. Equations are established to express the relationship between the flexural and tensile strength of steel fiber-reinforced RPC and the heating temperature. The theoretical curves are in good agreement with the test data.


Sign in / Sign up

Export Citation Format

Share Document