scholarly journals Possible superconductivity from incoherent carriers in overdoped cuprates

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
M. Culo ◽  
C. Duffy ◽  
J. Ayres ◽  
M. Berben ◽  
Yi-Ting Hsu ◽  
...  

There is now compelling evidence that the normal state of superconducting overdoped cuprates is a strange metal comprising two distinct charge sectors, one governed by coherent quasiparticle excitations, the other seemingly incoherent and characterized by non-quasiparticle (Planckian) dissipation. The zero-temperature superfluid density n_s(0)ns(0) of overdoped cuprates exhibits an anomalous depletion with increased hole doping pp, falling to zero at the edge of the superconducting dome. Over the same doping range, the effective zero-temperature Hall number n_{\rm H}(0) transitions from pp to 1 + pp. By taking into account the presence of these two charge sectors, we demonstrate that in the overdoped cuprates Tl_22Ba_22CuO_{6+\delta}6+δ and La_{2-x}2−xSr_xxCuO_44, the growth in n_s(0)ns(0) as pp is decreased from the overdoped side may be compensated by the loss of carriers in the coherent sector. Such a correspondence is contrary to expectations from conventional BCS theory and implies that superconductivity in overdoped cuprates emerges uniquely from the sector that exhibits incoherent transport in the normal state.

2000 ◽  
Vol 341-348 ◽  
pp. 641-642
Author(s):  
S. Ono ◽  
Yoichi Ando ◽  
T. Murayama ◽  
F.F. Balakirev ◽  
J.B. Betts ◽  
...  

1987 ◽  
Vol 01 (03n04) ◽  
pp. 1067-1070 ◽  
Author(s):  
M. Petravić ◽  
A. Hamzić ◽  
B. Leontić ◽  
L. Forró

We present Hall effect measurements in the normal state of the high temperature superconducting ceramics La2−xSrxCuO4 (x=0, 0.1, 0.15, 0.2, 0.25, 0.3), YBa2Cu3o7 and GdBa2Cu3O7 . The first family has temperature independent Hall constant for x>0, while in the other two systems RH is proportional to 1/T. From the Hall effect it follows that the transport in these compounds is hole-like.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242488
Author(s):  
Satoshi Nishiwaki ◽  
Shigeki Saito ◽  
Kyosuke Takeshita ◽  
Hidefumi Kato ◽  
Ryuzo Ueda ◽  
...  

Macrophages play an indispensable role in both innate and acquired immunity, while the persistence of activated macrophages can sometimes be harmful to the host, resulting in multi-organ damage. Macrophages develop from monocytes in the circulation. However, little is known about the organ affinity of macrophages in the normal state. Using in vivo imaging with XenoLight DiR®, we observed that macrophages showed strong affinity for the liver, spleen and lung, and weak affinity for the gut and bone marrow, but little or no affinity for the kidney and skin. We also found that administered macrophages were still alive 168 hours after injection. On the other hand, treatment with clodronate liposomes, which are readily taken up by macrophages via phagocytosis, strongly reduced the number of macrophages in the liver, spleen and lung.


2019 ◽  
Vol 256 ◽  
pp. 02011
Author(s):  
Fan Dong ◽  
Chong Lei ◽  
Xiao Yu Yang ◽  
Shao Feng Wang ◽  
Cong Ruan

The influences of the installations of the camshaft support, and timing system and the heat release on the valve gap of the gasoline engine were analyzed in the present. The experiments were carried out on 50 4-cylinder 4-stroke gasoline engines, and the results indicate that to tighten the camshaft support has a great impact on valve gap, the indicated mean there was an obvious deformation in cylinder head after the camshaft support was tightened. The timing system also has a significant influence on the valve gap because it produces a downward force to the camshaft, leading to a smaller valve gap near the timing system and a bigger valve gap on the other side. It was also found that with the increase of temperature the valve gap was 0.1 mm larger than that in the normal state.


2008 ◽  
Vol 19 (12) ◽  
pp. 1777-1785 ◽  
Author(s):  
F. P. FERNANDES ◽  
F. W. S. LIMA

The zero-temperature Glauber dynamics is used to investigate the persistence probability P(t) in the Potts model with Q = 3, 4, 5, 7, 9, 12, 24, 64, 128, 256, 512, 1024, 4096, 16 384, …, 230 states on directed and undirected Barabási–Albert networks and Erdös–Rényi (ER) random graphs. In this model, it is found that P(t) decays exponentially to zero in short times for directed and undirected ER random graphs. For directed and undirected BA networks, in contrast it decays exponentially to a constant value for long times, i.e., P(∞) is different from zero for all Q values (here studied) from Q = 3, 4, 5, …, 230; this shows "blocking" for all these Q values. Except that for Q = 230 in the undirected case P(t) tends exponentially to zero; this could be just a finite-size effect since in the other "blocking" cases you may have only a few unchanged spins.


1994 ◽  
Vol 08 (15) ◽  
pp. 2021-2039 ◽  
Author(s):  
ADRIAAN M.J. SCHAKEL

We discuss the effective theory of a bosonic superfluid whose microscopic behavior is described by a nonrelativistic, weak-coupling Φ4 theory in the phase with broken particle number symmetry, both at zero temperature and in the vicinity of the phase transition. In the zero-temperature regime, the theory is governed by the gapless Goldstone mode resulting from the broken .symmetry. Although this mode is gapless, the effective theory turns out to be Gallilei invariant. The regime just below the critical temperature is approached in a high-temperature expansion which is shown to be consistent with the weak-coupling assumption of the theory. We calculate the critical temperature, the co-efficients of the Landau theory, and the finite-temperature sound velocity. A comparison with BCS theory is given.


1994 ◽  
Vol 72 (9-10) ◽  
pp. 574-577 ◽  
Author(s):  
O. W. Greenberg

A method of general applicability to the solution of second-quantized field theories at finite temperature is illustrated using the BCS (Bardeen–Cooper–Schrieffer) model of superconductivity. Finite-temperature field theory is treated using the thermo field-theory formalism of Umezawa and collaborators. The solution of the field theory uses an expansion in thermal modes analogous to the Haag expansion in asymptotic fields used in the N-quantum approximation at zero temperature. The lowest approximation gives the usual gap equation.


1994 ◽  
Vol 235-240 ◽  
pp. 1801-1802 ◽  
Author(s):  
D. Ariosa ◽  
T. Luthy ◽  
C. Cao ◽  
J. Perret ◽  
P. Martinoli

1996 ◽  
Vol 10 (15) ◽  
pp. 1875-1894 ◽  
Author(s):  
M. HATSUDA ◽  
M. SATO ◽  
S. YAHIKOZAWA ◽  
T. HATSUDA

Adiabatic effective action for vortices in neutral and charged superfluids at zero temperature are calculated using the topological Landau-Ginzburg theory recently proposed by Hatsuda, Yahikozawa, Ao and Thouless, and vortex dynamics are examined. The Berry phase term arising in the effective action naturally yields the Magnus force in both neutral and charged superfluids. It is shown that in neutral superfluid there is only one degree of freedom, namely the center of vorticities, and the vortex energy is proportional to the sum of all vorticities so that it is finite only for the vanishing total vorticity of the system. On the other hand the effective mass and the vortex energy for a vortex in charged superfluids are defined individually as expected. The effects of the vortex core on these quantities are also estimated. The possible depinning scenario which is governed by the Magnus force and the inertial mass is also discussed.


Sign in / Sign up

Export Citation Format

Share Document