clodronate liposomes
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 2)

Biomolecules ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 654
Author(s):  
Ting Chen ◽  
Xiaoxiao Tan ◽  
Fan Xia ◽  
Ya Hua ◽  
Richard F. Keep ◽  
...  

The choroid plexus (CP) is the primary source of cerebrospinal fluid in the central nervous system. Recent evidence indicates that inflammatory pathways at the CP may be involved in hydrocephalus development. Peroxiredoxin 2 (Prx2) is a major component of red blood cells. Extracellular Prx2 is proinflammatory, and its release after red blood cell lysis may contribute to hydrocephalus after intraventricular hemorrhage. This study aimed to identify alterations in CP macrophages and dendritic cells following intracerebroventricular Prx2 injection and investigate the relationship between macrophages/dendritic cells and hydrocephalus. There were two parts to this study. In the first part, adult male Sprague–Dawley rats received an intracerebroventricular injection of Prx2 or saline. In the second part, Prx2 was co-injected with clodronate liposomes or control liposomes. All animals were euthanized at 24 h after magnetic resonance imaging. Immunohistochemistry was used to evaluate macrophages in CP, magnetic resonance imaging to quantify hydrocephalus, and histology to assess ventricular wall damage. The intracerebroventricular injection of Prx2 not only increased the OX-6 positive cells, but it also altered their location in the CP and immunophenotype. Co-injecting clodronate liposomes with Prx2 decreased the number of macrophages and simultaneously attenuated Prx2-induced hydrocephalus and ventricular wall damage. These results suggest that CP macrophages play an essential role in CP inflammation-induced hydrocephalus. These macrophages may be a potential therapeutic target in post-hemorrhagic hydrocephalus.


2021 ◽  
Vol 116 (1) ◽  
Author(s):  
Dongze Zhang ◽  
Wenfeng Hu ◽  
Huiyin Tu ◽  
Bryan T. Hackfort ◽  
Bin Duan ◽  
...  

AbstractCardiac sympathetic overactivation is involved in arrhythmogenesis in patients with chronic heart failure (CHF). Inflammatory infiltration in the stellate ganglion (SG) is a critical factor for cardiac sympathoexcitation in patients with ventricular arrhythmias. This study aims to investigate if macrophage depletion in SGs decreases cardiac sympathetic overactivation and ventricular arrhythmogenesis in CHF. Surgical ligation of the coronary artery was used for induction of CHF. Clodronate liposomes were microinjected into bilateral SGs of CHF rats for macrophage depletion. Using cytokine array, immunofluorescence staining, and Western blot analysis, we found that macrophage expansion and expression of TNFα and IL-1β in SGs were markedly increased in CHF rats. Flow cytometry data confirmed that the percentage of macrophages in SGs was higher in CHF rats than that in sham rats. Clodronate liposomes significantly reduced CHF-elevated proinflammatory cytokine levels and macrophage expansion in SGs. Clodronate liposomes also reduced CHF-increased N-type Ca2+ currents and excitability of cardiac sympathetic postganglionic neurons and inhibited CHF-enhanced cardiac sympathetic nerve activity. ECG data from 24-h, continuous telemetry recording in conscious rats demonstrated that clodronate liposomes not only restored CHF-induced heterogeneity of ventricular electrical activities, but also decreased the incidence and duration of ventricular tachycardia/fibrillation in CHF. Macrophage depletion with clodronate liposomes attenuated CHF-induced cardiac sympathetic overactivation and ventricular arrhythmias through reduction of macrophage expansion and neuroinflammation in SGs.


PLoS ONE ◽  
2020 ◽  
Vol 15 (12) ◽  
pp. e0242488
Author(s):  
Satoshi Nishiwaki ◽  
Shigeki Saito ◽  
Kyosuke Takeshita ◽  
Hidefumi Kato ◽  
Ryuzo Ueda ◽  
...  

Macrophages play an indispensable role in both innate and acquired immunity, while the persistence of activated macrophages can sometimes be harmful to the host, resulting in multi-organ damage. Macrophages develop from monocytes in the circulation. However, little is known about the organ affinity of macrophages in the normal state. Using in vivo imaging with XenoLight DiR®, we observed that macrophages showed strong affinity for the liver, spleen and lung, and weak affinity for the gut and bone marrow, but little or no affinity for the kidney and skin. We also found that administered macrophages were still alive 168 hours after injection. On the other hand, treatment with clodronate liposomes, which are readily taken up by macrophages via phagocytosis, strongly reduced the number of macrophages in the liver, spleen and lung.


Author(s):  
Wen Ju ◽  
Wenyi Lu ◽  
Yurong Bao ◽  
Tiantian Sun ◽  
Seyram Yao Adzraku ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 8930
Author(s):  
Genève Perron-Deshaies ◽  
Philippe St-Louis ◽  
Hugo Romero ◽  
Tatiana Scorza

Erythropoietin (EPO) is an essential hormone for erythropoiesis, protecting differentiating erythroblasts against apoptosis. EPO has been largely studied in stress or pathological conditions but its regulatory role in steady state erythropoiesis has been less documented. Herein, we report production of EPO by bone marrow-derived macrophages (BMDM) in vitro, and its further enhancement in BMDM conditioned with media from apoptotic cells. Confocal microscopy confirmed EPO production in erythroblastic island (EBI)-associated macrophages, and analysis of mice depleted of EBI macrophages by clodronate liposomes revealed drops in EPO levels in bone marrow (BM) cell lysates, and decreased percentages of EPO-responsive erythroblasts in the BM. We hypothesize that EBI macrophages are an in-situ source of EPO and sustain basal erythropoiesis in part through its secretion. To study this hypothesis, mice were injected with clodronate liposomes and were supplied with exogenous EPO (1–10 IU/mouse) to evaluate potential rescue of the deficiency in erythroid cells. Our results show that at doses of 5 and 10 IU, EPO significantly rescues BM steady state erythropoiesis in mice deficient of macrophages. We propose existence of a mechanism by which EBI macrophages secrete EPO in response to apoptotic erythroblasts, which is in turn controlled by the numbers of erythroid precursors generated.


2020 ◽  
Vol 344 ◽  
pp. 577244
Author(s):  
Shohei Takagi ◽  
Saki Murayama ◽  
Katsuhiro Torii ◽  
Shoko Takemura-Morita ◽  
Erkin Kurganov ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Jing-Jing Sun ◽  
Lin Tang ◽  
Xiao-Pei Zhao ◽  
Jun-Mei Xu ◽  
Yang Xiao ◽  
...  

Background and Objective. Diabetic neuropathic pain (DNP) is a common complication associated with diabetes. Currently, its underlying pathomechanism remains unknown. Studies have revealed that the recruitment of blood monocyte-derived macrophages (MDMs) to the spinal cord plays a pivotal role in different models of central nervous system injury. Therefore, the present study aimed at exploring the infiltration and function of MDMs in DNP using a mice model. Methods. Diabetes was induced using streptozotocin in male A/J mice. Mechanical withdrawal thresholds were measured weekly to characterize neuropathy phenotype. Quantitative analysis of CD11b was performed and visualized by immunofluorescence. Spinal cord cells were isolated from myelin and debris by Percoll gradient. Flow cytometry was used to label CD11b and CD45 antibodies to differentiate MDMs (CD45highCD11b+) from resident microglia (CD45lowCD11b+). Mice were injected with clodronate liposomes to investigate the role of MDMs in DNP. The successful depletion of monocytes was determined by flow cytometry. Results. The DNP mice model was successfully established. Compared with nondiabetic mice, diabetic mice displayed a markedly higher level of CD11b immunofluorescence in the spinal cord. The number of CD11b-positive microglia/macrophages gradually increased over the 28 days of testing after STZ injection, and a significant increase was observed on Day 14 (P<0.01) and 28 (P<0.01). Further analysis by flow cytometry showed that the infiltration of peripheral macrophages began to increase in 2 weeks (P<0.001) and reached a maximum at 4 weeks (P<0.001) post-STZ injection compared to the control. The depletion of MDMs by clodronate liposomes alleviated diabetes-induced tactile allodynia (P<0.05) and reduced the infiltration of MDMs (P<0.001) as well as the expression of IL-1β and TNF-α in the spinal cord (P<0.05). Conclusions. The infiltration of blood MDMs in the spinal cord may promote the development of painful neuropathy in diabetes.


2018 ◽  
Vol 314 (1) ◽  
pp. G22-G31 ◽  
Author(s):  
Jackie E. Bader ◽  
Reilly T. Enos ◽  
Kandy T. Velázquez ◽  
Meredith S. Carson ◽  
Mitzi Nagarkatti ◽  
...  

We examined the role of macrophages in inflammation associated with colorectal cancer (CRC). Given the emerging evidence on immune-microbiota interactions in CRC, we also sought to examine the interaction between macrophages and gut microbiota. To induce CRC, male C57BL/6 mice ( n = 32) received a single injection of azoxymethane (AOM), followed by three cycles of dextran sodium sulfate (DSS)-supplemented water in weeks 1, 4, and 7. Prior to the final DSS cycle ( week 7) and twice weekly until euthanasia, mice ( n = 16/group) received either 200 μl ip of clodronate-filled liposomes (CLD) or phosphate-buffered saline (PBS) encapsulated liposomes to deplete macrophages. Colon tissue was analyzed for polyp burden, macrophage markers, transcription factors, and inflammatory mediators. Stool samples were collected, and DNA was isolated and subsequently sequenced for 16S rRNA. Clodronate liposomes decreased tumor number by ∼36% and specifically large (≥1 mm) tumors by ∼36% ( P < 0.05). This was consistent with a decrease in gene expression of EMR1 in the colon tissue and polyp tissue as well as expression of select markers associated with M1 (IL-6) and M2 macrophages (IL-13, IL-10, TGFβ, CCL17) in the colon tissue ( P < 0.05). Similarly, there was a decrease in STAT3 and p38 MAPK and ERK signaling in colon tissue. Clodronate liposomes increased the relative abundance of the Firmicutes phylum ( P < 0.05) and specifically Lactobacillaceae and Clostridiaceae families, which have been associated with reduced CRC risk. Overall, these data support the development of therapeutic strategies to target macrophages in CRC and provide support for further evaluation of immune-microbiota interactions in CRC. NEW & NOTEWORTHY We found that macrophage depletion during late-stage tumorigenesis is effective at reducing tumor growth. This was associated with a decrease in macrophage markers and chemokines in the colon tissue and a decrease in transcription factors that are linked to colorectal cancer. The macrophage-depleted group was found to have an increased abundance of Firmicutes, a phylum with documented anti-tumorigenic effects. Overall, these data support the development of therapeutic strategies to target macrophages in colorectal cancer.


Sign in / Sign up

Export Citation Format

Share Document