scholarly journals Rotating 5D black holes: Interactions and deformations near extremality

2021 ◽  
Vol 11 (6) ◽  
Author(s):  
Alejandra Castro ◽  
Juan Pedraza ◽  
Chiara Toldo ◽  
Evita Verheijden

We study a two-dimensional theory of gravity coupled to matter that is relevant to describe holographic properties of black holes with two equal angular momenta in five dimensions (with or without cosmological constant). We focus on the near-horizon geometry of the near-extremal black hole, where the effective theory reduces to Jackiw-Teitelboim (JT) gravity coupled to a massive scalar field. We compute the corrections to correlation functions due to cubic interactions present in this theory. A novel feature is that these corrections do not have a definite sign: for AdS_55 black holes the sign depends on the mass of the extremal solution. We discuss possible interpretations of these corrections from a gravitational and holographic perspective. We also quantify the imprint of the JT sector on the UV region, i.e. how these degrees of freedom, characteristic for the near-horizon region, influence the asymptotically far region of the black hole. This gives an interesting insight on how to interpret the IR modes in the context of their UV completion, which depends on the environment that contains the black hole.

2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Luca V. Iliesiu ◽  
Gustavo J. Turiaci

Abstract An important open question in black hole thermodynamics is about the existence of a “mass gap” between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this paper, we reliably compute the partition function of Reissner-Nordström near-extremal black holes at temperature scales comparable to the conjectured gap. We find that the density of states at fixed charge does not exhibit a gap; rather, at the expected gap energy scale, we see a continuum of states. We compute the partition function in the canonical and grand canonical ensembles, keeping track of all the fields appearing through a dimensional reduction on S2 in the near-horizon region. Our calculation shows that the relevant degrees of freedom at low temperatures are those of 2d Jackiw-Teitelboim gravity coupled to the electromagnetic U(1) gauge field and to an SO(3) gauge field generated by the dimensional reduction.


2011 ◽  
Vol 26 (12) ◽  
pp. 1903-1971 ◽  
Author(s):  
JOAN SIMON

I review some of the concepts at the crossroads of gravitational thermodynamics, holography and quantum mechanics. First, the origin of gravitational thermodynamics due to coarse graining of quantum information is exemplified using the half-BPS sector of [Formula: see text] SYM and its LLM description in type IIB supergravity. The notion of black holes as effective geometries, its relation to the fuzzball programme and some of the puzzles raising for large black holes are discussed. Second, I review recent progress for extremal black holes, both microscopically, discussing a constituent model for stationary extremal non-BPS black holes, and semiclassically, discussing the extremal black hole/CFT conjecture. The latter is examined from the AdS3/CFT2 perspective. Third, I review the importance of the holographic principle to encode nonlocal gravity features allowing us to relate the gravitational physics of local observers with thermodynamics and the role causality plays in these arguments by identifying horizons (screens) as diathermic walls. I speculate with the emergence of an approximate CFT in the deep IR close to any horizon and its relation with an effective dynamical description of the degrees of freedom living on these holographic screens.


2014 ◽  
Vol 23 (11) ◽  
pp. 1450095 ◽  
Author(s):  
S. H. Hendi ◽  
M. Sepehri Rad

Employing linear order perturbation theory with the rotation parameter as the perturbative parameter, we obtain asymptotically AdS slowly rotating black hole solutions in the Einstein gravity with Born–Infeld (BI) type nonlinear electrodynamics (NED). We start from asymptotically AdS static black hole solutions coupled to BI type NED in five dimensions. Then, we consider the effect of adding a small amount of angular momenta to the seed solutions. Finally, we investigate the geometry and thermodynamic properties of the solutions.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Ryotaku Suzuki ◽  
Shinya Tomizawa

Abstract Using the large D effective theory approach, we construct a static solution of non-extremal and squashed black holes with/without an electric charge, which describes a spherical black hole in a Kaluza-Klein spacetime with a compactified dimension. The asymptotic background with a compactified dimension and near-horizon geometry are analytically solved by the 1/D expansion. Particularly, our work demonstrates that the large D limit can be applied to solve the non-trivial background with a compactified direction, which leads to a first-order flow equation. Moreover, we show that the extremal limit consistently reproduces the known extremal result.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Mehrdad Mirbabayi

Abstract We propose a Euclidean preparation of an asymptotically AdS2 spacetime that contains an inflating dS2 bubble. The setup can be embedded in a four dimensional theory with a Minkowski vacuum and a false vacuum. AdS2 approximates the near horizon geometry of a two-sided near-extremal Reissner-Nordström black hole, and the two sides can connect to the same Minkowski asymptotics to form a topologically nontrivial worm- hole geometry. Likewise, in the false vacuum the near-horizon geometry of near-extremal black holes is approximately dS2 times 2-sphere. We interpret the Euclidean solution as describing the decay of an excitation inside the wormhole to a false vacuum bubble. The result is an inflating region inside a non-traversable asymptotically Minkowski wormhole.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Subhroneel Chakrabarti ◽  
Suresh Govindarajan ◽  
P. Shanmugapriya ◽  
Yogesh K. Srivastava ◽  
Amitabh Virmani

Abstract Although BMPV black holes in flat space and in Taub-NUT space have identical near-horizon geometries, they have different indices from the microscopic analysis. For K3 compactification of type IIB theory, Sen et al. in a series of papers identified that the key to resolving this puzzle is the black hole hair modes: smooth, normalisable, bosonic and fermionic degrees of freedom living outside the horizon. In this paper, we extend their study to N = 4 CHL orbifold models. For these models, the puzzle is more challenging due to the presence of the twisted sectors. We identify hair modes in the untwisted as well as twisted sectors. We show that after removing the contributions of the hair modes from the microscopic partition functions, the 4d and 5d horizon partition functions agree. Special care is taken to present details on the smoothness analysis of hair modes for rotating black holes, thereby filling an essential gap in the literature.


1995 ◽  
Vol 10 (28) ◽  
pp. 2081-2093 ◽  
Author(s):  
ASHOKE SEN

Some of the extremal black hole solutions in string theory have the same quantum numbers as the Bogomol’nyi saturated elementary string states. We explore the possibility that these black holes can be identified with elementary string excitations. It is shown that stringy effects could correct the Bekenstein-Hawking formula for the black hole entropy in such a way that it correctly reproduces the logarithm of the density of elementary string states. In particular, this entropy has the correct dependence on three independent parameters, the mass and the left-handed charge of the black hole, and the string coupling constant.


2021 ◽  
Vol 81 (5) ◽  
Author(s):  
Shao-Jun Zhang

AbstractWe study massive scalar field perturbation on Kerr black holes in dynamical Chern–Simons gravity by performing a $$(2+1)$$ ( 2 + 1 ) -dimensional simulation. Object pictures of the wave dynamics in time domain are obtained. The tachyonic instability is found to always occur for any nonzero black hole spin and any scalar field mass as long as the coupling constant exceeds a critical value. The presence of the mass term suppresses or even quench the instability. The quantitative dependence of the onset of the tachyonic instability on the coupling constant, the scalar field mass and the black hole spin is given numerically.


2011 ◽  
Vol 26 (22) ◽  
pp. 1601-1611 ◽  
Author(s):  
JØRGEN RASMUSSEN

We consider Kerr–Newman–AdS–dS black holes near extremality and work out the near-horizon geometry of these near-extremal black holes. We identify the exact U (1)L× U (1)R isometries of the near-horizon geometry and provide boundary conditions enhancing them to a pair of commuting Virasoro algebras. The conserved charges of the corresponding asymptotic symmetries are found to be well-defined and nonvanishing and to yield central charges cL≠0 and cR = 0. The Cardy formula subsequently reproduces the Bekenstein–Hawking entropy of the black hole. This suggests that the near-extremal Kerr–Newman–AdS–dS black hole is holographically dual to a non-chiral two-dimensional conformal field theory.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Chang Liu ◽  
Yan-Gang Miao ◽  
Yu-Mei Wu ◽  
Yu-Hao Zhang

We suggest a quantum black hole model that is based on an analogue to hydrogen atoms. A self-regular Schwarzschild-AdS black hole is investigated, where the mass density of the extreme black hole is given by the probability density of the ground state of hydrogen atoms and the mass densities of nonextreme black holes are given by the probability densities of excited states with no angular momenta. Such an analogue is inclined to adopt quantization of black hole horizons. In this way, the total mass of black holes is quantized. Furthermore, the quantum hoop conjecture and the Correspondence Principle are discussed.


Sign in / Sign up

Export Citation Format

Share Document