scholarly journals The spin Drude weight of the XXZ chain and generalized hydrodynamics

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Andrew Urichuk ◽  
Yahya Oez ◽  
Andreas Klümper ◽  
Jesko Sirker

Based on a generalized free energy we derive exact thermodynamic Bethe ansatz formulas for the expectation value of the spin current, the spin current-charge, charge-charge correlators, and consequently the Drude weight. These formulas agree with recent conjectures within the generalized hydrodynamics formalism. They follow, however, directly from a proper treatment of the operator expression of the spin current. The result for the Drude weight is identical to the one obtained 20 years ago based on the Kohn formula and TBA. We numerically evaluate the Drude weight for anisotropies \Delta=\cos(\gamma)Δ=cos(γ) with \gamma = \pi n/mγ=πn/m, n\leq mn≤m integer and coprime. We prove, furthermore, that the high-temperature asymptotics for general \gamma=\pi n/mγ=πn/m—obtained by analysis of the quantum transfer matrix eigenvalues—agrees with the bound which has been obtained by the construction of quasi-local charges.

2015 ◽  
Vol 70 (10) ◽  
pp. 867-874 ◽  
Author(s):  
Abdelamelk Boumali

AbstractIn this paper, we investigated the thermodynamics properties of the one-dimensional Duffin–Kemmer–Petiau oscillator by using the Hurwitz zeta function method. In particular, we calculated the following main thermal quantities: the free energy, the total energy, the entropy, and the specific heat. The Hurwitz zeta function allowed us to compute the vacuum expectation value of the energy of our oscillator.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Peng Zhang ◽  
Ryo Noguchi ◽  
Kenta Kuroda ◽  
Chun Lin ◽  
Kaishu Kawaguchi ◽  
...  

AbstractA quantum spin Hall (QSH) insulator hosts topological states at the one-dimensional (1D) edge, along which backscattering by nonmagnetic impurities is strictly prohibited. Its 3D analogue, a weak topological insulator (WTI), possesses similar quasi-1D topological states confined at side surfaces. The enhanced confinement could provide a route for dissipationless current and better advantages for applications relative to strong topological insulators (STIs). However, the topological side surface is usually not cleavable and is thus hard to observe. Here, we visualize the topological states of the WTI candidate ZrTe5 by spin and angle-resolved photoemission spectroscopy (ARPES): a quasi-1D band with spin-momentum locking was revealed on the side surface. We further demonstrate that the bulk band gap is controlled by external strain, realizing a more stable WTI state or an ideal Dirac semimetal (DS) state. The highly directional spin-current and the tunable band gap in ZrTe5 will provide an excellent platform for applications.


2021 ◽  
Vol 74 (3) ◽  
pp. 615-675
Author(s):  
Matthias Erbar ◽  
Martin Huesmann ◽  
Thomas Leblé

2020 ◽  
Vol 2020 (3) ◽  
Author(s):  
Junichi Haruna ◽  
Hikaru Kawai

Abstract In the standard model, the weak scale is the only parameter with mass dimensions. This means that the standard model itself cannot explain the origin of the weak scale. On the other hand, from the results of recent accelerator experiments, except for some small corrections, the standard model has increased the possibility of being an effective theory up to the Planck scale. From these facts, it is naturally inferred that the weak scale is determined by some dynamics from the Planck scale. In order to answer this question, we rely on the multiple point criticality principle as a clue and consider the classically conformal $\mathbb{Z}_2\times \mathbb{Z}_2$ invariant two-scalar model as a minimal model in which the weak scale is generated dynamically from the Planck scale. This model contains only two real scalar fields and does not contain any fermions or gauge fields. In this model, due to a Coleman–Weinberg-like mechanism, the one-scalar field spontaneously breaks the $ \mathbb{Z}_2$ symmetry with a vacuum expectation value connected with the cutoff momentum. We investigate this using the one-loop effective potential, renormalization group and large-$N$ limit. We also investigate whether it is possible to reproduce the mass term and vacuum expectation value of the Higgs field by coupling this model with the standard model in the Higgs portal framework. In this case, the one-scalar field that does not break $\mathbb{Z}_2$ can be a candidate for dark matter and have a mass of about several TeV in appropriate parameters. On the other hand, the other scalar field breaks $\mathbb{Z}_2$ and has a mass of several tens of GeV. These results will be verifiable in near-future experiments.


2007 ◽  
Vol 4 (3) ◽  
pp. 393-396
Author(s):  
Baghdad Science Journal

The aim of this work is to evaluate the one- electron expectation value from the radial electronic density function D(r1) for different wave function for the 2S state of Be atom . The wave function used were published in 1960,1974and 1993, respectavily. Using Hartree-Fock wave function as a Slater determinant has used the partitioning technique for the analysis open shell system of Be (1s22s2) state, the analyze Be atom for six-pairs electronic wave function , tow of these are for intra-shells (K,L) and the rest for inter-shells(KL) . The results are obtained numerically by using computer programs (Mathcad).


1873 ◽  
Vol 19 (87) ◽  
pp. 485-487

The proper treatment of mental disease must always be considered as involving two distinct divisions. In the one, “moral” management, it is necessary to gain regard and willing obedience, to check wayward impulse, to beat away disturbing fears, to cheer the despairing, to restrain, not by force, bat by patience and firmness, the angry and the violent, and to catch the moment in which the swiftly wavering mind may be brought to rest, and its balance permanently retained. The other division embraces the correct employment of hygienic and purely medical remedial agents.


1979 ◽  
Vol 57 (5) ◽  
pp. 500-502 ◽  
Author(s):  
Joaquim Jose Moura Ramos ◽  
Jacques Reisse ◽  
M. H. Abraham

A new treatment of the solvent effect on the solvolysis of tert-butyl chloride is proposed. This treatment is based on activation free energy measurements and on transfer free energy measurements of the reactant (R) on the one hand and of a model (M) of the activated complex (AC) on the other hand. Solute–solvent interaction free energies for the reactant, the activated complex and the model compound are estimated. This estimation involves the calculation of the free energy of cavity formation of these various solutes (R, AC, and M) in all the solvents. These cavity terms, which are a function of the cohesive properties of the solvent and of the surface of the cavity do not reflect the electronic structure of the solute whereas the interaction free energy term does. The method we propose can be described as a new 'experimental' approach for the study of the charge separation in an activated complex.


2012 ◽  
Vol 550-553 ◽  
pp. 2607-2611
Author(s):  
Chun Hua Yang ◽  
Gang Chen ◽  
Long Zhang

Seven systems of one-step synthesis of aniline were designed, and it was determined which one could occur spontaneously through the calculation of Gibbs free energy of it. Among the seven systems, the Gibbs free energy of the one with ammonia as the aminating agent and hydrogen peroxide as the oxidant was the lowest, thus its process driving force was the largest, that is, .For this system just mentioned above, the standard Gibbs free energies, the equilibrium constant and the equilibrium conversions of benzene under different conditions were discussed ,which was expected to provide a theoretical basis for further development and application of the system.


Sign in / Sign up

Export Citation Format

Share Document