scholarly journals The non-rational limit of D-series minimal models

2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Sylvain Ribault

We study the limit of D-series minimal models when the central charge tends to a generic irrational value c\in (-\infty, 1)c∈(−∞,1). We find that the limit theory’s diagonal three-point structure constant differs from that of Liouville theory by a distribution factor, which is given by a divergent Verlinde formula. Nevertheless, correlation functions that involve both non-diagonal and diagonal fields are smooth functions of the diagonal fields’ conformal dimensions. The limit theory is a non-trivial example of a non-diagonal, non-rational, solved two-dimensional conformal field theory.

2019 ◽  
Vol 6 (6) ◽  
Author(s):  
Sylvain Ribault

We investigate exactly solvable two-dimensional conformal field theories that exist at generic values of the central charge, and that interpolate between A-series or D-series minimal models. When the central charge becomes rational, correlation functions of these CFTs may tend to correlation functions of minimal models, or diverge, or have finite limits which can be logarithmic. These results are based on analytic relations between four-point structure constants and residues of conformal blocks.


Author(s):  
Sylvain Ribault

We provide a brief but self-contained review of conformal field theory on the Riemann sphere. We first introduce general axioms such as local conformal invariance, and derive Ward identities and BPZ equations. We then define minimal models and Liouville theory by specific axioms on their spectrums and degenerate fields. We solve these theories by computing three- and four-point functions, and discuss their existence and uniqueness.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Enrico M. Brehm

Abstract We investigate perturbatively tractable deformations of topological defects in two-dimensional conformal field theories. We perturbatively compute the change in the g-factor, the reflectivity, and the entanglement entropy of the conformal defect at the end of these short RG flows. We also give instances of such flows in the diagonal Virasoro and Super-Virasoro Minimal Models.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Yi Li ◽  
Yang Zhou

Abstract In this article we probe the proposed holographic duality between $$ T\overline{T} $$ T T ¯ deformed two dimensional conformal field theory and the gravity theory of AdS3 with a Dirichlet cutoff by computing correlators of energy-momentum tensor. We focus on the large central charge sector of the $$ T\overline{T} $$ T T ¯ CFT in a Euclidean plane and a sphere, and compute the correlators of energy-momentum tensor using an operator identity promoted from the classical trace relation. The result agrees with a computation of classical pure gravity in Euclidean AdS3 with the corresponding cutoff surface, given a holographic dictionary which identifies gravity parameters with $$ T\overline{T} $$ T T ¯ CFT parameters.


1992 ◽  
Vol 07 (supp01a) ◽  
pp. 217-238 ◽  
Author(s):  
BORIS L. FEIGIN ◽  
TOMOKI NAKANISHI ◽  
HIROSI OOGURI

We describe several aspects of the annihilating ideals and reduced chiral algebras of conformal field theories, especially, minimal models of Wn algebras. The structure of the annihilating ideal and a vanishing condition is given. Using the annihilating ideal, the structure of quasi-finite models of the Virasoro (2,q) minimal models are studied, and their intimate relation to the Gordon identities are discussed. We also show the examples in which the reduced algebras of Wn and Wℓ algebras at the same central charge are isomorphic to each other.


2011 ◽  
Vol 26 (18) ◽  
pp. 3077-3090 ◽  
Author(s):  
BRADLY K. BUTTON ◽  
LEO RODRIGUEZ ◽  
CATHERINE A. WHITING ◽  
TUNA YILDIRIM

We show that the near horizon regime of a Kerr–Newman AdS (KNAdS) black hole, given by its two-dimensional analogue a là Robinson and Wilczek (Phys. Rev. Lett.95, 011303 (2005)), is asymptotically AdS2 and dual to a one-dimensional quantum conformal field theory (CFT). The s-wave contribution of the resulting CFT's energy–momentum tensor together with the asymptotic symmetries, generate a centrally extended Virasoro algebra, whose central charge reproduces the Bekenstein–Hawking entropy via Cardy's formula. Our derived central charge also agrees with the near extremal Kerr/CFT correspondence (Phys. Rev. D80, 124008 (2009)) in the appropriate limits. We also compute the Hawking temperature of the KNAdS black hole by coupling its Robinson and Wilczek two-dimensional analogue (RW2DA) to conformal matter.


2000 ◽  
Vol 15 (06) ◽  
pp. 915-926 ◽  
Author(s):  
MARINA HUERTA

Two classes of Conformal Field Theories have been proposed to describe the Hierarchical Quantum Hall Effect: the multicomponent bosonic theory, characterized by the symmetry [Formula: see text] and the W1+∞ minimal models with central charge c=m. In spite of having the same spectrum of edge excitations, they manifest differences in the degeneracy of the states and in the quantum statistics, which call for a more detailed comparison between them. Here, we describe their detailed relation for the general case, c=m and extend the methods previously published for c≤3. Specifically, we obtain the reduction in the number of degrees of freedom from the multicomponent Abelian theory to the minimal models by decomposing the characters of the [Formula: see text] representations into those of the c=mW1+∞ minimal models. Furthermore, we find the Hamiltonian whose renormalization group flow interpolates between the two models, having the W1+∞ minimal models as an infrared fixed point.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Akram Sadat Sefiedgar

The emergence of the quantum gravitational effects in a very high energy regime necessitates some corrections to the thermodynamics of black holes. In this letter, we investigate a possible modification to the thermodynamics of Schwarzschild anti-de Sitter (SAdS) black holes due to rainbow gravity model. Using the correspondence between a (d+1)-dimensional SAdS black hole and a conformal filed theory ind-dimensional spacetime, one may find the corrections to the Cardy-Verlinde formula from the modified thermodynamics of the black hole. Furthermore, we show that the corrected Cardy-Verlinde formula can also be derived by redefining the Virasoro operator and the central charge.


2012 ◽  
Vol 27 (20) ◽  
pp. 1250111 ◽  
Author(s):  
FANG-FANG YUAN ◽  
YONG-CHANG HUANG

A Liouville formalism was proposed many years ago to account for the black hole entropy. It was recently updated to connect thermodynamics of general black holes, in particular the Hawking temperature, to two-dimensional Liouville theory. This relies on the dimensional reduction to two-dimensional black hole metric. The relevant dilaton gravity model can be rewritten as a Liouville-like theory. We refine the method and give general formulas for the corresponding scalar and energy–momentum tensors in Liouville theory. This enables us to read off the black hole temperature using a relation which was found about three decades ago. Then the range of application is extended to include nonspherical black holes such as neutral and charged black rings, topological black hole and the case coupled to a scalar field. As for the entropy, following previous authors, we invoke the Lagrangian approach to central charge by Cadoni and then use the Cardy formula. The general relevant parameters are also given. This approach is more advantageous than the usual Hamiltonian approach which was used by the old Liouville formalism for black hole entropy.


Sign in / Sign up

Export Citation Format

Share Document