scholarly journals Nonequilibrium steady states in the Floquet-Lindblad systems: van Vleck's high-frequency expansion approach

2021 ◽  
Vol 4 (4) ◽  
Author(s):  
Tatsuhiko Ikeda ◽  
Koki Chinzei ◽  
Masahiro Sato

Nonequilibrium steady states (NESSs) in periodically driven dissipative quantum systems are vital in Floquet engineering. We develop a general theory for high-frequency drives with Lindblad-type dissipation to characterize and analyze NESSs. This theory is based on the high-frequency (HF) expansion with linear algebraic numerics and without numerically solving the time evolution. Using this theory, we show that NESSs can deviate from the Floquet-Gibbs state depending on the dissipation type. We also show the validity and usefulness of the HF-expansion approach in concrete models for a diamond nitrogen-vacancy (NV) center, a kicked open XY spin chain with topological phase transition under boundary dissipation, and the Heisenberg spin chain in a circularly-polarized magnetic field under bulk dissipation. In particular, for the isotropic Heisenberg chain, we propose the dissipation-assisted terahertz (THz) inverse Faraday effect in quantum magnets. Our theoretical framework applies to various time-periodic Lindblad equations that are currently under active research.

2014 ◽  
Vol 378 (4) ◽  
pp. 362-366
Author(s):  
Mitaxi P. Mehta ◽  
Souvik Dutta ◽  
Shubhanshu Tiwari

2020 ◽  
Vol 6 (27) ◽  
pp. eabb4019 ◽  
Author(s):  
Tatsuhiko N. Ikeda ◽  
Masahiro Sato

Laser technology has developed and accelerated photo-induced nonequilibrium physics, from both the scientific and engineering viewpoints. Floquet engineering, i.e., controlling material properties and functionalities by time-periodic drives, is at the forefront of quantum physics of light-matter interaction. However, it is limited to ideal dissipationless systems. Extending Floquet engineering to various materials requires understanding of the quantum states emerging in a balance of the periodic drive and energy dissipation. Here, we derive a general description for nonequilibrium steady states (NESSs) in periodically driven dissipative systems by focusing on systems under high-frequency drive and time-independent Lindblad-type dissipation. Our formula correctly describes the time average, fluctuation, and symmetry properties of the NESS, and can be computed efficiently in numerical calculations. This approach will play fundamental roles in Floquet engineering in a broad class of dissipative quantum systems from atoms and molecules to mesoscopic systems, and condensed matter.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Charles B. Thorn

Abstract Although the energy spectrum of the Heisenberg spin chain on a circle defined by$$ H=\frac{1}{4}\sum \limits_{k=1}^M\left({\sigma}_k^x{\sigma}_{k+1}^x+{\sigma}_k^y{\sigma}_{k+1}^y+\Delta {\sigma}_k^z{\sigma}_{k+1}^z\right) $$ H = 1 4 ∑ k = 1 M σ k x σ k + 1 x + σ k y σ k + 1 y + Δ σ k z σ k + 1 z is well known for any fixed M, the boundary conditions vary according to whether M ∈ 4ℕ + r, where r = −1, 0, 1, 2, and also according to the parity of the number of overturned spins in the state, In string theory all these cases must be allowed because interactions involve a string with M spins breaking into strings with M1< M and M − M1 spins (or vice versa). We organize the energy spectrum and degeneracies of H in the case ∆ = 0 where the system is equivalent to a system of free fermions. In spite of the multiplicity of special cases, in the limit M → ∞ the spectrum is that of a free compactified worldsheet field. Such a field can be interpreted as a compact transverse string coordinate x(σ) ≡ x(σ) + R0. We construct the bosonization formulas explicitly in all separate cases, and for each sector give the Virasoro conformal generators in both fermionic and bosonic formulations. Furthermore from calculations in the literature for selected classes of excited states, there is strong evidence that the only change for ∆ ≠ 0 is a change in the compactification radius R0→ R∆. As ∆ → −1 this radius goes to infinity, giving a concrete example of noncompact space emerging from a discrete dynamical system. Finally we apply our work to construct the three string vertex implied by a string whose bosonic coordinates emerge from this mechanism.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Pengcheng Lu ◽  
Yi Qiao ◽  
Junpeng Cao ◽  
Wen-Li Yang ◽  
Kang jie Shi ◽  
...  

Abstract A new nonlinear integral equation (NLIE) describing the thermodynamics of the Heisenberg spin chain is derived based on the t − W relation of the quantum transfer matrices. The free energy of the system in a magnetic field is thus obtained by solving the NLIE. This method can be generalized to other lattice quantum integrable models. Taking the SU(3)-invariant quantum spin chain as an example, we construct the corre- sponding NLIEs and compute the free energy. The present results coincide exactly with those obtained via other methods previously.


Sign in / Sign up

Export Citation Format

Share Document