scholarly journals Identification and Bioinformatic Analysis of Circular RNA Expression in Peripheral Blood Mononuclear Cells from Patients with Chronic Obstructive Pulmonary Disease

2020 ◽  
Vol Volume 15 ◽  
pp. 1391-1401 ◽  
Author(s):  
Ruirui Duan ◽  
Hongtao Niu ◽  
Tao Yu ◽  
Han Cui ◽  
Ting Yang ◽  
...  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Valeria Conti ◽  
Graziamaria Corbi ◽  
Valentina Manzo ◽  
Paola Malangone ◽  
Carolina Vitale ◽  
...  

Background. Oxidative stress is a recognized pathogenic mechanism in chronic obstructive pulmonary disease (COPD). Expression of the NAD+-dependent deacetylase Sirtuin 1 (SIRT1), an antiaging molecule with a key role in oxidative stress response, has been described as decreased in the lung of COPD patients. No studies so far investigated whether systemic SIRT1 activity was associated to decreased lung function in this disease. Methods. We measured SIRT1 protein expression and activity in peripheral blood mononuclear cells (PBMCs) and total oxidative status (TOS), total antioxidant capacity (TEAC), and oxidative stress index (TOS/TEAC) in the plasma of 25 COPD patients, 20 healthy nonsmokers (HnS), and 20 healthy smokers (HS). Results. The activity of SIRT1 was significantly lower in COPD patients compared to both control groups while protein expression decreased progressively (HnS > HS > COPD). TOS levels were significantly lower in HnS than in smoke-associated subjects (COPD and HS), while TEAC levels were progressively lower according (HnS > HS > COPD). In COPD patients, SIRT1 activity, but not protein levels, correlated significantly with both lung function parameters (FEV1/FVC and FEV1) and TEAC. Conclusions. These findings suggest loss of SIRT1-driven antioxidant activity as relevant in COPD pathogenesis and identify SIRT1 activity as a potential convenient biomarker for identification of mild/moderate, stable COPD.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiaoyan Qu ◽  
Xiaomin Dang ◽  
Weijia Wang ◽  
Ying Li ◽  
Dan Xu ◽  
...  

Background. Inflammation plays a pivotal role in the pathogenesis of chronic obstructive pulmonary disease (COPD). We evaluated the lncRNA and mRNA expression profile of peripheral blood mononuclear cells (PBMCs) from healthy nonsmokers, smokers without airflow limitation, and COPD patients. Methods. lncRNA and mRNA profiling of PBMCs from 17 smokers and 14 COPD subjects was detected by high-throughput microarray. The expression of dysregulated lncRNAs was validated by qPCR. The lncRNA targets in dysregulated mRNAs were predicted and the GO enrichment was analyzed. The regulatory role of lncRNA ENST00000502883.1 on CXCL16 expression and consequently the effect on PBMC recruitment were investigated by siRNA knockdown and chemotaxis analysis. Results. We identified 158 differentially expressed lncRNAs in PBMCs from COPD subjects compared with smokers. The dysregulated expression of 5 selected lncRNAs NR_026891.1 (FLJ10038), ENST00000502883.1 (RP11-499E18.1), HIT000648516, XR_429541.1, and ENST00000597550.1 (CTD-2245F17.3), was validated. The GO enrichment showed that leukocyte migration, immune response, and apoptosis are the main enriched processes that previously reported to be involved in the pathogenesis of COPD. The regulatory role of ENST00000502883.1 on CXCL16 expression and consequently the effect on PBMC recruitment was confirmed. Conclusion. This study may provide clues for further studies targeting lncRNAs to control inflammation in COPD.


2020 ◽  
Vol 9 (5) ◽  
pp. 1253 ◽  
Author(s):  
Marianne Riou ◽  
Abrar Alfatni ◽  
Anne-Laure Charles ◽  
Emmanuel Andrès ◽  
Cristina Pistea ◽  
...  

Lung diseases such as chronic obstructive pulmonary disease, asthma, pulmonary arterial hypertension, or idiopathic pulmonary fibrosis are major causes of morbidity and mortality. Complex, their physiopathology is multifactorial and includes lung mitochondrial dysfunction and enhanced reactive oxygen species (ROS) release, which deserves increased attention. Further, and importantly, circulating blood cells (peripheral blood mononuclear cells-(PBMCs) and platelets) likely participate in these systemic diseases. This review presents the data published so far and shows that circulating blood cells mitochondrial oxidative capacity are likely to be reduced in chronic obstructive pulmonary disease (COPD), but enhanced in asthma and pulmonary arterial hypertension in a context of increased oxidative stress. Besides such PBMCs or platelets bioenergetics modifications, mitochondrial DNA (mtDNA) changes have also been observed in patients. These new insights open exciting challenges to determine their role as biomarkers or potential guide to a new therapeutic approach in lung diseases.


Sign in / Sign up

Export Citation Format

Share Document