scholarly journals Type I interferon receptor in peripheral blood mononuclear cells may predict response to intra-arterial 5-fluorouracil + interferon therapy for advanced hepatocellular carcinoma

Author(s):  
Keisuke Hino ◽  
Tomiyama ◽  
Yoshioka ◽  
Yanai ◽  
Kawase ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pattapon Kunadirek ◽  
Chaiyaboot Ariyachet ◽  
Supachaya Sriphoosanaphan ◽  
Nutcha Pinjaroen ◽  
Pongserath Sirichindakul ◽  
...  

AbstractNovel and sensitive biomarkers is highly required for early detection and predicting prognosis of hepatocellular carcinoma (HCC). Here, we investigated transcription profiles from peripheral blood mononuclear cells (PBMCs) of 8 patients with HCC and PBMCs from co-culture model with HCC using RNA-Sequencing. These transcription profiles were cross compared with published microarray datasets of PBMCs in HCC to identify differentially expressed genes (DEGs). A total of commonly identified of 24 DEGs among these data were proposed as cancer-induced genes in PBMCs, including 18 upregulated and 6 downregulated DEGs. The KEGG pathway showed that these enriched genes were mainly associated with immune responses. Five up-regulated candidate genes including BHLHE40, AREG, SOCS1, CCL5, and DDIT4 were selected and further validated in PBMCs of 100 patients with HBV-related HCC, 100 patients with chronic HBV infection and 100 healthy controls. Based on ROC analysis, BHLHE40 and DDIT4 displayed better diagnostic performance than alpha-fetoprotein (AFP) in discriminating HCC from controls. Additionally, BHLHE40 and DDIT4 had high sensitivity for detecting AFP-negative and early-stage HCC. BHLHE40 was also emerged as an independent prognostic factor of overall survival of HCC. Together, our study indicated that BHLHE40 in PBMCs could be a promising diagnostic and prognostic biomarker for HBV-related HCC.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Francisco Díez-Fuertes ◽  
Humberto Erick De La Torre-Tarazona ◽  
Esther Calonge ◽  
Maria Pernas ◽  
María del Mar Alonso-Socas ◽  
...  

Abstract The elite controller (EC)-long term non-progressor (LTNP) phenotype represent a spontaneous and advantageous model of HIV-1 control in the absence of therapy. The transcriptome of peripheral blood mononuclear cells (PBMCs) collected from EC-LTNPs was sequenced by RNA-Seq and compared with the transcriptomes from other phenotypes of disease progression. The transcript abundance estimation combined with the use of supervised classification algorithms allowed the selection of 20 genes and pseudogenes, mainly involved in interferon-regulated antiviral mechanisms and cell machineries of transcription and translation, as the best predictive genes of disease progression. Differential expression analyses between phenotypes showed an altered calcium homeostasis in EC-LTNPs evidenced by the upregulation of several membrane receptors implicated in calcium-signaling cascades and intracellular calcium-mobilization and by the overrepresentation of NFAT1/Elk-1-binding sites in the promoters of the genes differentially expressed in these individuals. A coordinated upregulation of host genes associated with HIV-1 reverse transcription and viral transcription was also observed in EC-LTNPs –i.e. p21/CDKN1A, TNF, IER3 and GADD45B. We also found an upregulation of ANKRD54 in EC-LTNPs and viremic LTNPs in comparison with typical progressors and a clear alteration of type-I interferon signaling as a consequence of viremia in typical progressors before and after receiving antiretroviral therapy.


Sign in / Sign up

Export Citation Format

Share Document