scholarly journals WEAR CHARACTERIZATION OF LM29 ALLOY WITH40 MICRON SIZED B4C REINFORCED METAL COMPOSITES

2021 ◽  
Vol 9 (11) ◽  
pp. 363-371
Author(s):  
G. Pathalinga Prasad ◽  
◽  
H.C. Chittappa ◽  
Madeva Nagaral ◽  
◽  
...  

This paper deals with the fabrication and evaluation of wear properties by introducing40 micron size B4C particulates into LM29 alloy matrix. LM29 alloy based metal matrix composites were prepared by stir casting method. 3, 6 and 9 wt. % of 40 micron sized B4C particulates were added to the base matrix. For each composite, the reinforcement particles were pre-heated to a temperature of 600 degree Celsius and then dispersed in steps of two into the vortex of molten LM29 alloy to improve wettability. The Micostructural study was done by using Scanning Electron Microscope (SEM), which revealed the uniform distribution of B4C particles in matrix alloy, EDS analysis confirmed the presence of B4C particles in the LM29 alloy matrix.A pin-on-disc wear testing machine was used to evaluate the wear loss of prepared specimens, in which a hardened EN32 steel disc was used as the counter face. The results revealed that the wear loss was increased with increase in normal load and sliding speed for all the specimens. The results also indicated that the wear loss of the LM29-B4C composites were lesser than that of the LM29 matrix. The worn surfaces and wear debris were characterized by SEM microanalysis.

2014 ◽  
Vol 984-985 ◽  
pp. 319-325 ◽  
Author(s):  
V. Bharath ◽  
Madeva Nagaral ◽  
V. Auradi ◽  
S.A. Kori

In the current investigation an attempt has been made and to produce ceramic Al2O3particulate reinforced 6061Al matrix composites by liquid metallurgy route (stir casting technique) and to study the dry sliding wear properties of the prepared composites. The amount of ceramic Al2O3particulate reinforcement addition was maintained at 9 and 12wt%. During the preparation of each composite the ceramic reinforcements were introduced in a novel way which involves three stage additions of reinforcements during melt stirring. The wear tests were conducted using pin on disc wear testing machine on 6061Al matrix before and after addition of Al2O3reinforcements Wear test results demonstrated the superior wear resistance of the composites over monolithic 6061Al alloy matrix. Key Words: MMC’s, Al2O3particulates, 6061Al, stir-casting


An investigational analysis was conducted to study the effect of basalt/curaua hybrid composite focusing on wear properties. The hybrid composites are fabricated by resin transfer molding and the tests are conducted by pin on disk as per ASTM G99. Basalt/Curaua relative fiber weight percentage as 0/100,40/60, 60/40, 100/0 are fabricated and analyzed for abrasion wear resistance. Specimens are tested for the load of 50N at 1 m/s using Pin on Disc wear testing machine by varying abrading distance. Worn out surfaces of the abraded composites are studied by using scanning electron microscopy (SEM) and Fourier- transform infrared spectroscopy (FTIR). Roughness of the worn and pure surfaces is also accounted to measure significance of hybridization on tribological properties of the hybrid composites. Result shows that coefficient of friction is increasing in higher the curaua fiber in hybrid composites. Morphology evident the wear mechanism and internal compatibility of hybrid fibers.


Author(s):  
A. Karthikeyan ◽  
S. Nallusamy

One of the most common problems encountered in many industrial products and its applications is wear. The purpose of this experimental research article is to analyze the wear behaviour of Al-6063 based SiC composites using pin on disc testing machine. In this present investigation there are nine different samples of Al/SiC composites with 5%, 7% and 9% volume of SiC were prepared through stir casting process. The sliding distance of 500 meter and the load 10 N were applied for wear testing of these prepared samples. From the experimental results, it was observed that the sliding velocity is greatly affects the wear rate and on increasing the sliding velocity the wear loss increases. It was also found that the wear loss decreases by increasing the amount of reinforcement element. Scanning electron microscope was used to examine the wear surfaces and found that the micro and transverse cracks, mild and severe wear occurred in the composite worn surfaces and wear structure of the composites.


SPE Journal ◽  
2021 ◽  
pp. 1-16
Author(s):  
Y. Zhou ◽  
J. H. Hu ◽  
B. Tan ◽  
Y. Jiang ◽  
Y. F. Tang

Summary Sealing is a technical bottleneck that affects drilling efficiency and cost in deep, difficult-to-drill formations. The spiral combination seal with active sand removal performance is a new type of seal, and the wear mechanism is not clear, resulting in no effective design. In this study, the wear properties of materials were measured by a friction-and-wear testing machine, and the measurement methods and criteria of wear loss and friction coefficient were established. The fitting function of working condition and friction coefficient was studied by fitting regression method. The law of influence of working conditions on friction coefficient and wear amount was determined. The actual wear model and evaluation criteria of wear condition were established by using wear test data and geometric relationship. The relationship among working conditions, contact stress, and wear depth is determined by numerical simulation method, and the wear mechanism of the new seal is revealed, which provides a theoretical basis for its application.


Author(s):  
Shivanna Shivanna ◽  
Sameer S Kulkarni ◽  
Samarth C ◽  
Sagar R ◽  
Sanil K R

Metal matrix composite (MMC’s) are very much familiar in the field like automobile and aerospace industries owing to their excellent wear and mechanical properties . The fundamental aim of this paper is to augment cognizance amongst the researchers and to attract their consideration towards the present approach to treat with the cryogenic usage for the nonferrous metals. In this writing it is endeavor to deliver the examination findings of character of cryogenic usage on Wear Properties of Al356-ZrSiO4 Particulate Reinforced metal matrix Composites adapted by Stir Casting technique. The amount of reinforcement is changed from 0 to 12wt% in track of 3 %. The ready composites are exposed to wear testing as per ASTM standards using pin on disc machine .The hardness of the composites was found to augment with augment in reinforcement in the composite. The inference obtained discloses that as reinforcement content in the composites increment and execution of cryogenic usage to composite amended the wear resistance.


2013 ◽  
Vol 420 ◽  
pp. 234-239
Author(s):  
Feng Yan Yang ◽  
Shi Jie Wang ◽  
Xiao Ren Lv

The wear mechanisms of different graphite contents of NBR by 45# steel under dry sliding and water lubrication were investigated. On MPV-600 computer-controlled abrasive wear testing machine, the coefficients of friction were measured continuously. Results showed that under dry sliding condition, the rubber wear loss is big, the coefficient of friction is higher, the temperature of the friction surface is rise obviously. Wear loss and friction coefficient of NBR decrease with the increase of graphite contents; With the increase of graphite contents wear loss and the friction coefficient decreases, and is mainly due to the graphite lubrication performance and increase the stiffness of the rubber contact area. At low content of graphite, adhesive wear of NBR is showed, in the high content of graphite, abrasive wear is showed. Water lubrication condition, wear surface level off, the wear loss is very small, and the lubrication and cooling effect of water makes the friction coefficient decrease. Graphite content is higher, the wear loss and coefficient of friction is smaller.


2017 ◽  
Vol 65 (2) ◽  
pp. 149-154 ◽  
Author(s):  
C. F. John ◽  
R. C. Paul ◽  
S. C. E. Singh ◽  
T. Ramkumar

Abstract High-energy mechanical alloying method was used to prepare Al-12Si-xZrC (x = 0, 5, 10, 15 wt. %) nanocomposites. Cylindrical preforms were prepared with an initial preform density of 89% by using a suitable die and punch assembly. The preforms were sintered in a muffle furnace with an inert gas atmosphere at a temperature of 550°C, followed by cooling until room temperature has been attained. Scanning electron microscope (SEM) and X-ray diffraction (XRD) techniques were used to characterize the composites. Pin-on-disc wear testing machine was used to determine the tribological properties of the prepared composites. The results show that the wear loss reduced with increasing the reinforcement content and coefficient of friction increases gradually.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Jyoti R. Mohanty ◽  
Sankar N. Das ◽  
Harish C. Das

The effect of fiber contents on wear behavior of date palm leaf reinforced polyvinyl pyrrolidone (PVP/DPL) composites has been experimentally investigated. The test samples with fillers in 10, 20, 30, and 40% based on weight of fibers were prepared using injection molding. The optimum fiber content (i.e., 26 wt%) for maximum mechanical strength of the composites was determined by regression analysis. The dry sliding wear tests were conducted for each composition at different sliding velocities (0.392, 0.471, and 0.549 m/s) and sliding distances (188, 254, and 376 m) by applying normal loads of 5, 10, 15, and 20 N using pin-on-disc wear testing machine. The specific wear rate, wear loss, and coefficient of friction were plotted against the normal load and sliding distance at all sliding velocities. The results reveal that incorporation of date palm leaf fibers leads to significant improvement in the wear resistance of composites up to optimum fiber content and then decreases as fiber content increases. Further, it is found that surface modification has significant effect on wear performance. Worn surfaces of some selected samples were studied by scanning electron microscopy to analyze the wear mechanism.


2018 ◽  
Vol 17 (04) ◽  
pp. 1760029
Author(s):  
T. Hariprasad ◽  
K. Varatharajan ◽  
S. Ravi

In this present work, an attempt is made to compare the microstructural, mechanical and tribological properties of Al 5083-5% and 10% Gr, Al 5083-5% and 10% ZrSiO4 composite with Al 5083-5, 10% Gr-5 and 10% ZrSiO4 hybrid composite. The samples were prepared by using the stir casting technique, and the characterizations of composites and hybrid composite were observed by using SEM, EDAX and X-ray diffraction (XRD). The mechanical properties such as hardness, tensile, compressive strength of hybrid composite were found to be better than those of composites. The wear test was carried out by using a pin-on-disc wear tribometer by varying parameters like normal load (5, 10[Formula: see text]N), sliding speed (1, 1.5, 2[Formula: see text]m/s) with constant sliding distance (2000[Formula: see text]m). The worn surface of the samples is examined by using SEM, and the wear properties of the hybrid composite are found to exhibit superior wear resistance properties than composites.


2012 ◽  
Vol 184-185 ◽  
pp. 1352-1355
Author(s):  
Hong Sheng Ding ◽  
Zhi Fang Cheng ◽  
Hui Rong ◽  
Lin Lu

Nano-structured Al2O3-13%TiO2 coating was deposited by air plasma spraying. Wear properties of the coatings under different load trough SRV friction and wear testing machine were studied, the results showed that wear mass loss of Al2O3-13%TiO2 coating by plasma spraying slide with ZrO2 and Si3N4 increase with load increasing, but the difference is that wear loss of coaing slide with Si3N4 ¬is lower than the coating slide with ZrO2 when load is less than 40N. Opposite phenomenon will occur when load is higher than 40N.The wear surface morphology was analyzed trough scanning electron microscopic, the results showed that coating slided with Si3N4 ball when matching at low loads, with a shallow furrow shape grinding. There were wide and deep furrows while at higher loads. Coating slide with ZrO2 ball has no obvious cracks, no layer spalling.Wear was occurred by micro cutting.


Sign in / Sign up

Export Citation Format

Share Document