scholarly journals IN VITRO-CYTOTOXICITY STUDIES OF METHANOLIC LEAF EXTRACT OF MEMOCYLON UMBELLATUM BURM.F. AGAINST BREAST CANCER.

2017 ◽  
Vol 5 (12) ◽  
pp. 1980-1984
Author(s):  
VikramR Palled ◽  
◽  
Badarinath Kulkarni ◽  
Harish Handral ◽  
◽  
...  
Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1110
Author(s):  
Minh Thanh Vu ◽  
Dinh Tien Dung Nguyen ◽  
Ngoc Hoi Nguyen ◽  
Van Thu Le ◽  
The Nam Dao ◽  
...  

Paclitaxel (PTX) and anastrozole (ANA) have been frequently applied in breast cancer treatment. PTX is well-known for its anti-proliferative effect meanwhile ANA has just been discovered to act as an estrogen receptor α (ERα) ligand. The combination therapy of PTX and ANA is expected to improve treating efficiency, as ANA would act as a ligand binding with the ERα gene expressed in breast cancer cells and thereafter PTX would inhibit the division and cause death to those cancer cells. In this study, liposome-based nanocarriers (LP) were developed for co-encapsulation of PTX and ANA to improve the efficacy of the combined drugs in an Estrogen receptor-responsive breast cancer study. PTX-ANA co-loaded LP was prepared using thin lipid film hydration method and was characterized for morphology, size, zeta potential, drug encapsulation and in vitro drug release. In addition, cell proliferation (WST assay) and IN Cell Analyzer were used for in vitro cytotoxicity studies on a human breast cancer cell line (MCF-7). Results showed that the prepared LP and PTX-ANA-LP had spherical vesicles, with a mean particle size of 170.1 ± 13.5 nm and 189.0 ± 22.1 nm, respectively. Controlled and sustained releases were achieved at 72 h for both of the loaded drugs. The in vitro cytotoxicity study found that the combined drugs showed higher toxicity than each single drug separately. These results suggested a new approach to breast cancer treatment, consisting of the combination therapy of PTX and ANA in liposomes based on ER response.


2020 ◽  
Vol 24 (09) ◽  
pp. 1138-1145
Author(s):  
Somila Dingiswayo ◽  
Balaji Babu ◽  
Earl Prinsloo ◽  
John Mack ◽  
Tebello Nyokong

Tin(IV) complexes of a 4-methylthiophenyl functionalized porphyrin (1-Sn) and its corrole analogue (2-Sn) were synthesized so that their photophysicochemical properties and photodynamic activities against MCF-7 breast cancer cells could be compared. Singlet oxygen luminescence studies revealed that 1-Sn and 2-Sn have comparable [Formula: see text] values in DMF of 0.59 and 0.60, respectively, while the IC[Formula: see text] values after irradiation of MCF-7 cells for 30 min with a Thorlabs 625 nm LED (432 J · cm[Formula: see text] were determined to be 12.4 and 8.9 [Formula: see text]M. The results demonstrate that the cellular uptake of 2-Sn and its molar absorptivity at the irradiation wavelength play a crucial role during in vitro cytotoxicity studies.


2017 ◽  
Vol 33 (1) ◽  
pp. 38-62 ◽  
Author(s):  
Zeynep Karahaliloğlu ◽  
Ebru Kilicay ◽  
Pınar Alpaslan ◽  
Baki Hazer ◽  
Emir Baki Denkbas

The development of novel combination anticancer drug delivery systems is an important step to improve the effectiveness of anticancer treatment in metastatic breast cancer and to overcome increased toxicity of the currently used combination treatments. The aim of this study was to assess efficient targeting, therapeutic efficacy, and bioavailability of a combination of drugs (curcumin and α-tocopheryl succinate) loaded polystyrene–polysoyaoil–diethanol amine nanoparticles. Polystyrene–polysoyaoil–diethanol amine nanoparticles encapsulating two drugs, individually or in combination, were prepared by double-emulsion solvent evaporation method, resulting in particle size smaller than 250 nm with a surface negative charge between −30 and −40 mV. Entrapment efficiency of curcumin and α-tocopheryl succinate in the epigallocatechin gallate–conjugated dual-drug-loaded nanoparticles was found to be 68% and 80%, respectively. The release kinetics of curcumin and α-tocopheryl succinate from the nanoparticles exhibited a gradual and continuous profile followed by an initial burst behavior with a release over 20 days in vitro. Next, we have investigated the anticancer activity of nanoparticles encapsulating both the drugs and individually drug in human breast cancer cells (MDA-MB-231) using double-staining-based cell death analysis, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assessment of cytotoxicity and flow cytometer. In vitro cytotoxicity studies revealed that epigallocatechin gallate–α-tocopheryl succinate/curcumin–polystyrene–polysoyaoil–diethanol amine nanoparticles are more potent than the corresponding α-tocopheryl succinate/curcumin–polystyrene–polysoyaoil–diethanol amine nanoparticles and their single-drug-loaded forms and show a synergistic and breast tumor targeting function. Thus, here, we propose epigallocatechin gallate–conjugated curcumin and α-tocopheryl succinate–loaded polystyrene–polysoyaoil–diethanol amine nanoparticles which effectively inhibit tumor growth and reduce toxicity compared to single-drug chemotherapy.


2020 ◽  
Vol 20 (6) ◽  
pp. 700-708
Author(s):  
Mitra Korani ◽  
Sara Nikoofal-Sahlabadi ◽  
Amin R. Nikpoor ◽  
Solmaz Ghaffari ◽  
Hossein Attar ◽  
...  

Aims: Here, three liposomal formulations of DPPC/DPPG/Chol/DSPE-mPEG2000 (F1), DPPC/DPPG/Chol (F2) and HSPC/DPPG/Chol/DSPE-mPEG2000 (F3) encapsulating BTZ were prepared and characterized in terms of their size, surface charge, drug loading, and release profile. Mannitol was used as a trapping agent to entrap the BTZ inside the liposomal core. The cytotoxicity and anti-tumor activity of formulations were investigated in vitro and in vivo in mice bearing tumor. Background: Bortezomib (BTZ) is an FDA approved proteasome inhibitor for the treatment of mantle cell lymphoma and multiple myeloma. The low solubility of BTZ has been responsible for the several side effects and low therapeutic efficacy of the drug. Encapsulating BTZ in a nano drug delivery system; helps overcome such issues. Among NDDSs, liposomes are promising diagnostic and therapeutic delivery vehicles in cancer treatment. Objective: Evaluating anti-tumor activity of bortezomib liposomal formulations. Methods: Data prompted us to design and develop three different liposomal formulations of BTZ based on Tm parameter, which determines liposomal stiffness. DPPC (Tm 41°C) and HSPC (Tm 55°C) lipids were chosen as variables associated with liposome rigidity. In vitro cytotoxicity assay was then carried out for the three designed liposomal formulations on C26 and B16F0, which are the colon and melanoma cancer mouse-cell lines, respectively. NIH 3T3 mouse embryonic fibroblast cell line was also used as a normal cell line. The therapeutic efficacy of these formulations was further assessed in mice tumor models. Result: MBTZ were successfully encapsulated into all the three liposomal formulations with a high entrapment efficacy of 60, 64, and 84% for F1, F2, and F3, respectively. The findings showed that liposomes mean particle diameter ranged from 103.4 to 146.8nm. In vitro cytotoxicity studies showed that liposomal-BTZ formulations had higher IC50 value in comparison to free BTZ. F2-liposomes with DPPC, having lower Tm of 41°C, showed much higher anti-tumor efficacy in mice models of C26 and B16F0 tumors compared to F3-HSPC liposomes with a Tm of 55°C. F2 formulation also enhanced mice survival compared with untreated groups, either in BALB/c or in C57BL/6 mice. Conclusion: Our findings indicated that F2-DPPC-liposomal formulations prepared with Tm close to body temperature seem to be effective in reducing the side effects and increasing the therapeutic efficacy of BTZ and merits further investigation.


2020 ◽  
Vol 10 (5) ◽  
pp. 577-590
Author(s):  
Jai B. Sharma ◽  
Shailendra Bhatt ◽  
Asmita Sharma ◽  
Manish Kumar

Background: The potential use of nanocarriers is being explored rapidly for the targeted delivery of anticancer agents. Curcumin is a natural polyphenolic compound obtained from rhizomes of turmeric, belongs to family Zingiberaceae. It possesses chemopreventive and chemotherapeutic activity with low toxicity in almost all types of cancer. The low solubility and bioavailability of curcumin make it unable to use for the clinical purpose. The necessity of an effective strategy to overcome the limitations of curcumin is responsible for the development of its nanocarriers. Objective: This study is aimed to review the role of curcumin nanocarriers for the treatment of cancer with special emphasis on cellular uptake and in vitro cytotoxicity studies. In addition to this, the effect of various ligand conjugated curcumin nanoparticles on different types of cancer was also studied. Methods: A systematic review was conducted by extensively surfing the PubMed, science direct and other portals to get the latest update on recent development in nanocarriers of curcumin. Results: The current data from recent studies showed that nanocarriers of curcumin resulted in the targeted delivery, higher efficacy, enhanced bioavailability and lower toxicity. The curcumin nanoparticles showed significant inhibitory effects on cancer cells as compared to free curcumin. Conclusion: It can be concluded that bioavailability of curcumin and its cytotoxic effect to cancer cells can be enhanced by the development of curcumin based nanocarriers and it was found to be a potential drug delivery technique for the treatment of cancer.


2021 ◽  
Vol 22 (9) ◽  
pp. 4655
Author(s):  
Priyanka Bapat ◽  
Debalina Goswami Sewell ◽  
Mallory Boylan ◽  
Arun K. Sharma ◽  
Julian E. Spallholz

Her/2+ breast cancer accounts for ~25% mortality in women and overexpression of Her/2 leads to cell growth and tumor progression. Trastuzumab (Tz) with Taxane is the preferred treatment for Her/2+ patients. However, Tz responsive patients often develop resistance to Tz treatment. Herein, redox selenides (RSe-) were covalently linked to Tz using a selenium (Se)-modified Bolton–Hunter Reagent forming Seleno-Trastuzumab (Se-Tz; ~25 µgSe/mg). Se-Tz was compared to Tz and sodium selenite to assess the viability of JIMT-1 and BT-474 cells. Comparative cell viability was examined by microscopy and assessed by fluorometric/enzymatic assays. Se-Tz and selenite redox cycle producing superoxide (O2•−) are more cytotoxic to Tz resistant JIMT-1 and Tz sensitive BT-474 cells than Tz. The results of conjugating redox selenides to Tz suggest a wider application of this technology to other antibodies and targeting molecules.


2014 ◽  
Vol 24 (2) ◽  
pp. 553-562 ◽  
Author(s):  
A. Srikanth ◽  
S. Sarveswari ◽  
V. Vijayakumar ◽  
P. Gridharan ◽  
S. Karthikeyan

Sign in / Sign up

Export Citation Format

Share Document