scholarly journals CALORIFIC VALUE ENHANCEMENT DUE TO COMBINATION OF BIOCHARS FROM CORN COBS, TENDER COCONUT HUSKS AND PALM KERNEL SHELLS

2018 ◽  
Vol 6 (11) ◽  
pp. 234-238
Author(s):  
DamgouMani Kongnine ◽  
◽  
Pali Kpelou ◽  
Mazabalo Baneto ◽  
Kossi Napo ◽  
...  
2021 ◽  
Vol 14 (1) ◽  
pp. 1
Author(s):  
Muhammad Anwar ◽  
Rini Endang Prasetyowati ◽  
Hidayatul Ahyani

There are two methods of flue curing process used in virginia tobacco farmers in East Lombok, which are curing with fossil fuel and curing with local (alternative) fuels (candlenut shell, palm kernel shells, wood, and corn cobs). Now days, due to increasing fossil fuels price, farmer tend to use local fuels. The research objective was to compare the costs, income, and feasibility level of virginia tobacco farming on the use of various alternative fuels in the oven process in East Lombok Regency. The method used is descriptive survey method to 40 farmers. The cost of farming virginia tobacco using candlenut shell as fuel is Rp. 44,788,057/ha/planting season with an R/C ratio of 1.6 palm kernel shells of 45,081,109/ha/planting season with an R/C ratio of 1.5 wood of Rp. 49,498,452/ha/planting season with an R/C ratio of 1.4 and corn cobs of Rp. 39,184,196/ha/planting season with an R/C ratio of 1.8. The highest income is obtained from farmers who use corn cobs as fuel of Rp. 30,037,854/ha/planting season, the income of the farmers who use hazelnut shell and palm shell as fuel each is Rp. 25,938,788/ha/planting season and Rp. 23,757,891/ha/planting season. The lowest income using wood fuel is Rp. 16,883,748/ha/planting season. Because the R/C value is more than 1, it means that virginia tobacco farming using various alternative materials in the oven process in East Lombok Regency is feasible.


2021 ◽  
Author(s):  
A A. Saleh ◽  
Md Saiful Islam ◽  
Md. Shaharul Islam ◽  
M. A. M. A. Banggan

Abstract Hydrothermal Liquefaction (HTL) process is an alternative way for converting biomass to bio-fuels product. The aim of this study was to determine the effect of sample’s mass and heating time on the product yield (wt%) from palm kernel shells (PKS) and to characterize the bio-oil as produced. PKS which is one kind of biomass efficiently converted to bio-oil, bi-char and bio-gas by HTL associated with modified microwave oven. A modified household microwave oven with 800W was employed in this process. The product yield was increased proportionally with the sample mass from 31.16 wt% to 41.92 wt% for bio-oil at constant time of 15 minutes. However, a vice versa trend was observed for bio char. Furthermore, it was exhibited that the highest value of 66.51 wt% and then it reduced to 42.17 wt%. The last product, bio gas shows an increasing trend from 2.32wt% to 15.90wt%. For the second parameter, the production of bio oil decreases with the increasing of heating time while bio char and bio gas increases with the increases of time. For the highest product yield, the calorific value is 37.68 MJ/kg for 15g sample and 22.32 MJ/kg for 35g sample at 15 minutes heating time. Fourier Transform Infrared Spectroscopy (FTIR) result reveals that multiple functional groups i.e. alcohol, aldehydes, carboxylic acid and ketones is present in the PKS bio oil. Additionally, the pH value of the bio oil was in the range of 2-3.


2013 ◽  
Vol 856 ◽  
pp. 338-342 ◽  
Author(s):  
Chin Yee Sing ◽  
Mohd Shiraz Aris

Burning fossil fuel like coal in power plants released carbon dioxide that had been absorbed millions of years ago. Unfortunately, excessive carbon dioxide emission had led to global warming. Malaysia, as one of the major exporters of palm oil, has abundant oil palm mill residues that could be converted into value-added product like biomass fuel briquettes. Fuel briquette with palm kernel shell and palm mesocarp fibre as its main ingredients showed satisfactory fuel characteristics and mechanical properties as a pure biomass fuel briquette. The effects of adding some coal of higher calorific value to the satisfactory biomass fuel briquette were focused in this study. Various coal-biomass fuel blends were used, ranging from 0wt% coal to 50wt% coal. The fuel properties and mechanical properties of pure biomass briquette and briquettes with different amount of coal added were compared experimentally. From the fuel properties tests, it was found that as the coal content in the briquette was increased, the carbon content and calorific value increased. Mechanical property tests on the fuel briquettes showed a mixture of results, with some favored higher portion of coal in the briquette for better handling, transport and storage properties while some favored greater amount of biomass.


Author(s):  
A.O Adeyemi ◽  
M.A Anifowose ◽  
I.O Amototo ◽  
S.A Adebara ◽  
M.Y Olawuyi

This study examined the effect of varying water cement ratio on the compressive strength of concrete produced using palm kernel shell (PKS) as coarse aggregate at different replacement levels. The replacement levels of coarse aggregate with palm kernel shells (PKS) were 0%, 25%, 50%, and 100% respectively. PKS concrete cubes (144 specimens) of sizes 150mm x 150mm x 150mm were cast and cured in water for 7, 14, 21 and 28 days respectively. A mix ratio of 1:2:4 was adopted with water-cement ratio of 0.45, 0.5, and 0.6 respectively while the batching was done by weight. Slump test was conducted on fresh concrete while compressive strength test was carried out on the hardened concrete cubes using a compression testing machine of 2000kN capacity. The result of tests on fresh concrete shows that the slump height of 0.45 water cement ratio (w/c) increases with an increase in PKS%. This trend was similar to 0.50 and 0.60 w/c. However, the compressive strength of concrete cube decreases with an increase in w/c (from 0.45 to 0.60) but increases with respect to curing age and also decreases with increase in PKS%. Concrete with 0.45 water-cement ratio possess the highest compressive strength. It was observed that PKS is not a good substitute for coarse aggregate in mix ratio 1:2:4 for concrete productions. Hence, the study suggest the use of chemical admixture such as superplasticizer or calcium chloride in order to improve the strength of palm kernel shells-concrete.


BioResources ◽  
2020 ◽  
Vol 15 (3) ◽  
pp. 7058-7073
Author(s):  
Aurel Lunguleasa ◽  
Cosmin Spirchez ◽  
Sorin Radulescu

Making pellets from corn cobs, the goal of this work, was motivated by the abundance of vegetable biomass. Corn is used in both animal and human food. Four pelletizing presses with flat die and different capacities were considered. The influence of the capacity of the pellet mills on the density of the obtained pellets was established by increasing the capacities of the pellet mills to increase the density of the pellets. The waste of crushed corn cobs was used for pelletizing. The energy characteristics of the pellets from corn cobs were determined, with a high calorific value of 20.0 MJ·kg-1 and a calorific density of 19.8 MJ·m-3; these values were much higher than the wood species used currently in combustion. The black and calcined ash contents of 24.7% and 2.3%, respectively, were also obtained. Based on the main properties of experimental pellets, corn cob waste can be regarded as suitable for transformation into pellets with good characteristics. The positive influence of capacity press increase on density of pellets was also highlighted.


OALib ◽  
2018 ◽  
Vol 05 (12) ◽  
pp. 1-14
Author(s):  
Basil Olufemi Akinnuli ◽  
Oluwaseun Oluwagbemiga Ojo ◽  
Olutosin Olufisayo Ilori

2008 ◽  
Vol 2 (2) ◽  
pp. 132-138 ◽  
Author(s):  
O.O. Amu . ◽  
J.B. Adeyeri . ◽  
A.O. Haastrup . ◽  
A.A. Eboru .

Heliyon ◽  
2020 ◽  
Vol 6 (10) ◽  
pp. e05266
Author(s):  
Betty Osei Bonsu ◽  
Mohammed Takase ◽  
Jones Mantey

Sign in / Sign up

Export Citation Format

Share Document