scholarly journals Metabolites changes after pre-bloom gibberellic acid (GA3) application for inducing seedless grape

Plant Omics ◽  
2020 ◽  
pp. 94-103
Author(s):  
Sung Min Jung ◽  
Youn Young Hur

Gibberellic acid (GA3) treatment is a useful method for inducing seedless grape berries in the seeded grape bunch before flowering. In this work, we applied 100 ppm of GA3 on ‘Tamnara’ grape flower cluster at 14 days before flowering to find metabolites significantly related to seedlessness. Three bunches of grape flower samples were collected at nine different stages (Day before full bloom; DBF13, 10, 7, 5, 2, flowering (0) and day after full bloom; DAF 2, 5, 9). Metabolites of each collected sample were analyzed using GC-MS with derivatization method (MSTFA). Metabolite contents of GA3 treatment flower were compared with non-treated controls in all stages and analyzed using Partial least squares discriminate analysis (PLS-DA). As a result, five sampling times (DBF 13, 10, 2, 0, DAF 9) showed significance differences using GA3 treatments. Total of 13 metabolites were recognized to relate to differences in five specific sampling times and mainly affected the initial stages (DBF 13 and 10). Tartaric acid, D-glucose, phosphoric acid, and D-mannose, inositol were increased by GA3 treatment at the early-flower developing stage. Dehydroascorbic acid, caffeic acid, citric acid, and gluconic acid were mainly increased at the time of GA3 treatment but decreased approaching full bloom. All stages of GA3 treatment, L-glutamine, L-serine, and D-allose was decreased, but fructose increased. In particular, the metabolite contents before GA3 treatment provides new clues on the role of GA3 in the early stage of grape berry development

OENO One ◽  
2021 ◽  
Vol 55 (1) ◽  
pp. 119-131
Author(s):  
George Letchov ◽  
Venelin Roychev ◽  
Neli Keranova

The process related to the changes in dimensions and mass of grape berry passes through two growth phases separated by a lag phase, and can be described by a double sigmoid curve. The onset of the growth phases and their duration are important factors for understanding the growth processes in grape berries. A new method for their quantitative determination was developed in the present study. In this method, the phase transition dates correspond to the times at which the rate of change of the curvature of the logistic (sigmoid) curve reaches an extreme value. The method was tested on three seedless grape varieties, Sultanina, Ruby Seedless and Rusalka 3, and the changes in grape berry dimensions and mass were tracked from anthesis to harvest. For each of the varieties, a double logistic model of change in berry length, width and mass from anthesis to harvest was developed and the metrics of growth - beginning, stabilisation and end of growth - for each of the two phases were determined. It was found that the metrics in mass and berry dimensions do not match and shift relative to each other over time. A comparison of growth metrics with phenological metrics, such as anthesis, veraison and ripening, showed that phenophases cannot be used as a time scale to record the acceleration of growth processes, as they shifted in time with growth metrics. An exception was veraison, which coincided with the beginning of the accelerated growth of grapes during the second growth phase, following the lag phase. The time scale presented in the current research is a new tool for monitoring growth processes and could help clarify the links between visible changes in the grape berries and the ongoing processes within them. The developed method can also be used for the analysis of various growth processes that follow the logistic law.


2003 ◽  
Vol 30 (6) ◽  
pp. 621 ◽  
Author(s):  
Sarah Picaud ◽  
Frédéric Becq ◽  
Fabienne Dédaldéchamp ◽  
Agnès Ageorges ◽  
Serge Delrot

The ripening of grape (Vitis vinifera L.) berry is accompanied by dramatic accumulation of sugars and water. Two full-length clones and several partial clones encoding plasma membrane aquaporins (PIP) were cloned from grape berries collected at the beginning of ripening. Based on their sequences, on a phylogenetic analysis and on functional properties, both clones, called VvPIP1a and VvPIP1b were assigned to the PIP1 subfamily. RNA gel blot studies with berries at various stages of development indicated that VvPIP expression was highest at stages following veraison. Injection of Xenopus oocytes with VvPIP1a cRNA induced a moderate increase of water permeability and a large increase in glycerol permeability, whereas injection with VvPIP1b cRNA did not affect these permeabilities. Injection of VvPIP1a cRNA, but not VvPIP1b cRNA, inhibited urea uptake by the oocyte, and this inhibition was sensitive to HgCl2. The data are discussed in relation with the potential role of aquaporins in fruit physiology.


2005 ◽  
Vol 56 (5) ◽  
pp. 497
Author(s):  
K. Usha ◽  
D. Kashyap ◽  
B. Singh

Gibberellins have been used to improve quality of grapes in several cases. However, gibberellic acid (GA) alone is not enough to improve the quality in Perlette. A field experiment was conducted on 3-year-old grape cv. Perlette trained on pergolas, to investigate the effect of bunch dipping with GA3 and N6-benzyladenine (BA) on reducing the problem of shot berries and improving the productivity of grapevines. Our observations proved that the stage of application of GA3 and BA is crucial to avoiding seed formation in seedless varieties such as Perlette for table grapes. The results showed that BA at low (10 µL/L) or high concentration (30 µL/L) at 50% of full bloom caused seed development in the seedless grape cv. Perlette, whereas no seed was formed when BA was used later at the fruit set stage. Based on our studies, we found that bunch dipping with 30 µL/L GA3 (at 50% of full bloom) and 10µL/L BA (at pea size) significantly reduced the problem of shot berries, and improved the yield and quality in grape cv. Perlette.


2005 ◽  
Vol 56 (9) ◽  
pp. 1009
Author(s):  
K. Usha ◽  
D. Kashyap ◽  
B. Singh

Gibberellins have been used to improve quality of grapes in several cases. However, gibberellic acid (GA) alone is not enough to improve the quality in Perlette. A field experiment was conducted on 3-year-old grape cv. Perlette trained on pergolas, to investigate the effect of bunch dipping with GA3 and N6-benzyladenine (BA) on reducing the problem of shot berries and improving the productivity of grapevines. Our observations proved that the stage of application of GA3 and BA is crucial to avoiding seed formation in seedless varieties such as Perlette for table grapes. The results showed that BA at low (10 �L/L) or high concentration (30 �L/L) at 50% of full bloom caused seed development in the seedless grape cv. Perlette, whereas no seed was formed when BA was used later at the fruit set stage. Based on our studies, we found that bunch dipping with 30 �L/L GA3 (at 50% of full bloom) and 10�L/L BA (at pea size) significantly reduced the problem of shot berries, and improved the yield and quality in grape cv. Perlette.


HortScience ◽  
2004 ◽  
Vol 39 (4) ◽  
pp. 793B-793
Author(s):  
Hitoshi Ohara* ◽  
Marom Ungsa ◽  
Katsuya Ohkawa ◽  
Hiroyuki Matsui ◽  
Martin J. Bukovac

The effects of ammonium nitrate (AMN) on the penetration of Gibberellin A3 (GA3) into berries of `Kyoho' (Vitis labruscana Bailey) grape during berry development were studied. Treatment solutions of GA3 (100 ng·μL-1) and GA3 + AMN (20 millimolar concentration) were applied to the surface of grape berries under field conditions. The amount of GA3 penetrated was assayed using dwarf rice (Oryza sativa L., cv. Tan-ginbozu). At full bloom, the addition of AMN significantly enhanced GA3 penetration 24, 48 ad 72 hours after application by 13%, 16% and 21% of the applied GA3, respectively, representing a 1.7- to 2.4-fold increase over GA3 alone. At 4 weeks after full bloom (WAFB) at 24 hours after application, 20% of the applied GA3 penetrated in the presence of AMN compared to 15% in the absence of AMN. From varaison (7 WAFB) to maturity (10 WAFB), GA3 penetration decreased, from 6% to 2%, respectively, in the presence of AMN, and from 3% to 1% in the absence of AMN. The addition of AMN to the GA3 solution increased GA3 penetration relative to GA3 alone at all berry developmental stages. On the other hand, Cuticular wax density on the berry surface at 4 WAFB was 1.10 μg·mm-2, 5.8-fold greater than at full bloom (0.19 μg·mm-2). The thickness of the epidermal tissue doubled during the first 2 WAFB, but was maintained almost constant over the next 6 weeks. GA3 penetration was more closely related to the cuticular wax levels than the epidermal tissue thickness.


HortScience ◽  
2008 ◽  
Vol 43 (3) ◽  
pp. 957-961 ◽  
Author(s):  
Seth DeBolt ◽  
Renata Ristic ◽  
Patrick G. Iland ◽  
Christopher M. Ford

The response of grape berries at a cellular level to environmental change was explored with particular emphasis on physiological changes such as weight, sugar content, and the biosynthesis of organic acids. Three levels of light were used: highly exposed, moderately exposed, and light-excluding boxes (1% ambient with no change in temperature effect). Berry weight was significantly lower in light-excluding boxes than in exposed bunch treatments. Organic acid content and berry development were followed throughout the growing season. Light exclusion resulted in a significant reduction of both tartaric acid and oxalic acid compared with highly exposed fruit, suggesting that in this experiment, light irradiance influenced accumulation of these metabolites. In contrast, malic acid was broken down postveraison at a dramatically slower rate in light exclusion treatments. The sink properties of grape berries appear to change according to the light received by the bunch. These data imply that cluster shading significantly reduced berry size and suggest the role of organic acids as osmotica.


2003 ◽  
Vol 128 (3) ◽  
pp. 316-323 ◽  
Author(s):  
Xiuren Zhang ◽  
Guoguang Luo ◽  
Ronghui Wang ◽  
Jing Wang ◽  
David G. Himelrick

The relationship of assimilate supply to grape (Vitis vinifera L.) berry growth and development was studied with a seeded (`Kyoho') and a seedless (`Seedless Wuhehong') cultivar. A single shoot girdling between the second and third nodes below the basal cluster at the end of Stage I of berry growth shortened Stage II (the lag phase) of `Kyoho' grape berries by 10 days, and eliminated Stage II in `Seedless Wuhehong' grape berries. Double shoot girdling between the second and third nodes below the basal cluster and above the upper cluster, respectively, at the same time at the end of Stage I, advanced Stage II by 3 days in both cultivars. Normal accumulation of dry weight in the `Kyoho' grape berry is in a double sigmoidal pattern, but it became a single sigmoidal pattern in response to a single basal girdling. The highest percent moisture in berries was at 20 days after full bloom. Rapid changes in berry pectin substances lagged behind those of soluble solids and titratable acidity, and behind the onset of berry softening at veraison in `Kyoho', but not in `Seedless Wuhehong', for which the three processes were concurrent. It is suggested that the slow growth of the berries during Stage II is a result of a decrease in the rate of water accumulation on a whole berry basis and a decrease in accumulation of dry matter in the skin and flesh (pericarp) due to assimilate competition within grapevines and within berries. The relationships between levels of endogenous hormones (IAA, GA3, zeatin, zeatin riboside, and ABA) and berry growth were also studied with `Kyoho' grapes. The results showed that the slow growth of grape berries during Stage II was associated with assimilate competition between the skin-flesh (pericarp) and seeds, and with peak shifts of concentrations of IAA, GA3, zeatin and zeatin riboside. Changes in ABA levels were closely associated with ripening and senescence during late Stage III.


1990 ◽  
Vol 115 (2) ◽  
pp. 269-273 ◽  
Author(s):  
Merilark Padgett ◽  
Janice C. Morrison

Grape berries (Vitis vinifera L., `Thompson Seedless') exuded a variety of compounds through the cuticle and epicuticular wax layer onto the berry surface. The composition of the exudate changed through the course of the growing season. Phenolic compounds and malic acid were in relatively high concentrations in grape berry exudates after bloom, but were low in exudates from mature fruit. The rate of decrease of phenols and malic acid was more rapid during the early stage of berry growth than during the ripening period. Sugar and potassium concentrations in the berry exudates were low at bloom, but increased rapidly in the later stages of ripening. Water extracts of berry exudates contained sugars, malic acid, potassium, and sodium. The water extracts promoted mycelial growth of Botrytis cinerea Pers. Ethanol and ether extracts contained phenols and lipids. These fractions from fruit sampled in the first 3 weeks after bloom strongly inhibited mycelial growth. The inhibitory effect of these fractions decreased later in the season.


1973 ◽  
Vol 3 (1) ◽  
pp. 39-44 ◽  
Author(s):  
George A. Schier

The effect of gibberellic acid (GA3) on suckering from trembling aspen (Populustremuloides Michx.) roots was determined by treating two kinds of root cuttings, one that produced suckers from primordia newly initiated or in an early stage of development (EP roots) and another that produced suckers primarily from relatively large, visible primordia (LP roots). Also investigated was the effect of an inhibitor of gibberellin action, a substituted pyrimidine, on outgrowth of suckers from LP roots. All concentrations (25–400 mg/l) of GA3 stimulated shoot outgrowth from LP roots. In contrast, GA3 inhibited shoot development in EP roots. The role of endogenous gibberellin in sucker outgrowth was indicated by the inhibition of shoot elongation by the inhibitor of gibberellin action.


1998 ◽  
Vol 123 (5) ◽  
pp. 750-754 ◽  
Author(s):  
Satoru Kondo ◽  
Mako Kawai

Free and conjugated abscisic acid (ABA), anthocyanin and sugar concentrations were investigated in the skin of seedless `Pione' grapes (Vitis spp) treated with gibberellic acid (GA) and seeded `Pione' grapes. Seeded fruit were firmer than seedless fruit, until 53 days after full bloom (DAFB). The firmness of seeded fruit decreased dramatically between 43 and 53 DAFB. Anthocyanin concentrations increased in both types of fruit after 53 DAFB, but the concentration in seeded fruit was higher than in seedless fruit. Sugar concentration in the skin was higher in seedless than in seeded fruit prior to 53 DAFB, but at 80 DAFB sugar concentration was higher in the seeded fruit. ABA (free and conjugated forms) concentration in the skin showed a general increase towards harvest (80 DAFB). Skin ABA was higher in seeded than seedless fruit. After cis, trans-ABA (s-ABA) in the skin reached a maximum on 62 or 71 DAFB, its level decreased in both seeded and seedless fruit. The levels of trans, trans-ABA (t-ABA) and conjugated forms in both types of fruit failed to increase or increased only marginally after 62 or 71 DAFB. Free and conjugated ABA in the seed increased with DAFB until harvest. These results suggest that although maturation was promoted initially in the GA-treated seedless fruit, after 53 DAFB it was slowed relative to the seeded fruit. Enhanced maturation during the later stages of development of seeded fruit could be attributed to an increase in ABA concentration in the skin and the seed. These results also demonstrate that s-ABA is not metabolized in the skin to t-ABA and conjugated forms.


Sign in / Sign up

Export Citation Format

Share Document