IMPELEMENTASI SISTEM PEMANTAUAN OBJEK BERGERAK DENGAN MEMANFAATKAN FREKUENSI RADIO MENGGUNAKAN GPS (GLOBAL POSITIONING SYSTEM)

Author(s):  
Budi Triandi

GPS was developed by the United States Department of Defense as a reliable means for accurate navigation. The system provides highly accurate position and velocity information and precise time on a continuous global basis to an unlimited number of properly equipped users. By using combined GPS receiver and microcontroller together with radio system, we can design a monitoring system for our vehicles and display the result on the computer. This system consists of a master module that transmits and receives signals from computer and two slave modules to collect GPS data from vehicles. The result of experiment shows that this system is able to track the vehicle on digital map with accuracy as high as 95%.Keywords: GPS, microcontroller, monitoring, RF

CCIT Journal ◽  
2010 ◽  
Vol 4 (1) ◽  
pp. 43-56
Author(s):  
Abdul Jabbar Lubis

The GPS was developed by the United States Department of Defense as a reliable means for accurate navigation. The system provides highly accurate position and velocity information and precise time on a continuous global basis to an unlimited number of properly equipped users. By using combined GPS receiver and microcontroller together with radio system, we can design a monitoring system for our vehicles and display the result on the computer. This system consists of a master module that transmites and receives signals from computer and two slave modules to collect GPS data from vehicles. The result of experiment shows that this system is able to track the vehicle on digital map with accuracy as high as 95%.


1995 ◽  
Vol 48 (2) ◽  
pp. 180-191 ◽  
Author(s):  
Robert Loh

Today, no single technology has more broad-reaching potential for worldwide civil aviation than the future applications of satellite technology. These applications represent the greatest opportunity to enhance aviation system capacity, efficiency and safety since the introduction of radio-based navigation systems more than 50 years ago. The foundation for this optimism is the Global Positioning System (GPS), a satellite-based radio navigation system operated and controlled by the United States Department of Defense (DoD). In December 1993, DoD declared GPS to be in initial operational capability (10c), which means 24 satellites are now in orbit, available and usable for satellite navigation. The Federal Aviation Agency (FAA) responded to this potential through initiation of a comprehensive satellite programme involving government, industry and users to expedite research, development and field implementation of satellite-based navigation services.


The United States Department of Defense is developing a new generation of navigation satellites known as the Navstar Global Positioning System or GPS. When the full system of 18 satellites is deployed in the late 1980s, highly accurate information on position, velocity, and time will be available continuously to users anywhere in the world. This capability has already been demonstrated by the existing constellation of five prototype satellites. The original impetus for Navstar was the need for highly accurate positioning information by military aircraft, ships, and ground units. But Navstar also has potential for a variety of civilian uses, which include precision navigation, surveying and accurate time transfer. Moreover, the projected sharp decline in the cost of GPS user equipment will make the system available to a wide class of users.


2011 ◽  
Vol 64 (S1) ◽  
pp. S151-S161 ◽  
Author(s):  
Sihao Zhao ◽  
Mingquan Lu ◽  
Zhenming Feng

A number of methods have been developed to enhance the robustness of Global Positioning System (GPS) receivers when there are a limited number of visible satellites. Vector tracking is one of them. It utilizes information from all channels to aid the processing of individual channels to generate receiver positions and velocities. This paper analyzes relationships among code phase, carrier frequency, and receiver position and velocity, and presents a vector loop-tracking algorithm using an Extended Kalman filter implemented in a Matlab-based GPS software receiver. Simulated GPS signals are generated to test the proposed vector tracking method. The results show that when some of the satellites are blocked, the vector tracking loop provides better carrier frequency tracking results for the blocked signals and produces more accurate navigation solutions compared with traditional scalar tracking loops.


2021 ◽  
Vol 57 (2) ◽  
pp. 025003
Author(s):  
William H Baird

Abstract The United States’ Global Positioning System (GPS), and similar geolocation systems such as Galileo, GLONASS, and Beidou are used by people all over the globe. Modern receivers of these global navigation satellite systems can track multiple satellites from different constellations. Casual, non-technical users are probably aware that the positional information provided is typically accurate to within a few meters. We could expect physics students to infer that, because these systems rely on the travel time of radio signals, this implies time measurement accuracy on the scale of tens of nanoseconds. This feature has led to GPS-enabled Internet time servers providing stratum 1 accuracy for under $1000. In this paper, we will show that we can couple a GPS unit to a field programmable gate array (FPGA) to determine the temperature in a room. The more serious application of this GPS-FPGA pairing is to provide precise time-stamping of events, thereby synchronizing data collection between stations across a room or across the globe.


2013 ◽  
Vol 6 (1) ◽  
pp. 767-793
Author(s):  
A. Barreto ◽  
E. Cuevas ◽  
B. Damiri ◽  
P. M. Romero ◽  
F. Almansa

Abstract. In this paper we present the preliminary results of atmospheric column integrated water vapor (PWV) obtained with a new Lunar Cimel photometer (LC) at the high mountain Izaña Observatory in the period July–August, 2011. We have compared nocturnal PWV from LC with PWV from a Global Positioning System (GPS) receiver and nighttime radiosondes (RS92). LC data have been calibrated using the Lunar Langley Method (LLM). We complemented this comparative study using quasi-simultaneous daytime PWV from Cimel AERONET (CA), GPS and RS92. Comparison of daytime PWV from CA shows differences against GPS and RS92 up to 0.18 cm. Two different filters, with and approximate bandwidth of 10 nm and central wavelengths at 938 nm (Filter#1) and 937 nm (Filter#2), were mounted into the LC. Filter#1 is currently used in operational AERONET sunphotometers. PWV obtained with LC-Filter#1 showed an overestimation above 0.18 and 0.25 cm compared to GPS and RS92, respectively, meanwhile Filter#2, with a reduced out-of-band radiation, showed very low differences compared with the same references (≤0.03 cm). These results demonstrate the ability of the new lunar photometer to obtain accurate and continuous PWV measurements at night in addition to the notably influence of the filter's transmissivity response on PWV determination at nighttime. The use of enhanced bandpass filters in lunar photometry, which is affected by more important inaccuracies than sun-photometry, is necessary to infer PWV with similar precision than AERONET.


Author(s):  
G.A. Akinyemi ◽  
L.B. Kolawole ◽  
O.F. Dairo ◽  
Alexander A. Willoughby ◽  
R.B. Abdulrahim ◽  
...  

An investigation on the diurnal and seasonal variability of ionospheric Total Electron Content (TEC) over Nigeria is carried out in this study using Global Positioning System (GPS) observable. Nigeria coordinates fall within the trough of equatorial ionization anomaly region of African sector. The TEC data used were obtained from the ground-based GPS receiver stations of the Nigerian GNSS network of stations (NIGNET). The stations with their respective geomagnetic latitudes are Abuja (−1.64º), Yola (−1.32º), Zaria (−0.13º) and Kebbi (0.72º). The results of the diurnal analysis of the relative variability index (VD) revealed higher nighttime values than daytime values. The diurnal variation of VD also showed two conspicuous peaks: the post-midnight and the post-sunset. The diurnal-seasonal variation does not reveal any consistent pattern (no particular season leads the others throughout). On the average, considering all the seasons together maximum TEC variability occurred in Zaria (62%) and least in Yola (54%). Seasonally, maximum VD was recorded during March equinox and the least was recorded during December equinox.


2009 ◽  
Vol 20 (7) ◽  
pp. 075105 ◽  
Author(s):  
Ta-Kang Yeh ◽  
Cheinway Hwang ◽  
Guochang Xu ◽  
Chuan-Sheng Wang ◽  
Chien-Chih Lee

Sign in / Sign up

Export Citation Format

Share Document