scholarly journals Forecasting the Items Consumption in the Hotel Storage with the Autoregressive Integrated Moving Average Method

Author(s):  
Christopher Chandra ◽  
Alfannisa Annurrullah Fajrin ◽  
Cosmas Eko Suharyanto

In this era, hotel has storage as a storing space for every kind of items. Items stored in the storage are items being used for the needs of the staffs, also for the needs of hotel’s operational. The item consumption is running smoothly with resupply. However, there are often mistakes in resupplying the items. For preventing those several mistakes, a reference is needed to be used for controlling the amount of items arrival (monthly) with minding the amount of items in the storage should be. The reference to be used is the forecast of the item consumption every month. Forecasting was being done with Autoregressive Integrated Moving Average (ARIMA) method. There are five steps needed to build the ARIMA model, such as plot identification, model identification, model estimation, choosing the best model, and prediction (forecast). The input variable to be used in this research is the rime series from the data of storage’s item consumption starts from January 2018 until October 2020, and the output variable is the result of the prediction of item consumption in the next period, such as in November to December 2020. The results is subtracted with the number of items left in storage to obtain the minimum amount of item to be entered for the month.

2018 ◽  
Vol 15 (4) ◽  
pp. 135-143
Author(s):  
Dolly Parlagutan Pulungan ◽  
Sugeng Wahyudi ◽  
Suharnomo Suharnomo ◽  
Harjum Muharam

This study aims to examine whether the Autoregressive Integrated Moving Average (ARIMA) model is appropriate to be applied in the Indonesia Stock Exchange, especially for the socially resposible investment stocks. For the ARIMA model combines the autoregressive and moving average method, so it is viewed as a useful tool to predict the stock prices. Those methods are frequently used methods to forecast the stock prices. The data used in this study were daily SRI-KEHATI Index during the period of June 8, 2009 to July 17, 2017. The results showed that the daily SRI-KEHATI Index data were not stationary data, thus this data needed to be transformed. The transformation was done by using the first seasonal differencing transformation process. After being transformed, those data became stationary. Furthermore, this study found that ARIMA (3,1,1) was a model, which might be appropriate and fit with the data condition. This method was also relevant to be applied in the Indonesia Stock Exchange in order to forecast the stock prices.


2021 ◽  
Vol 54 (1) ◽  
pp. 233-244
Author(s):  
Taha Radwan

Abstract The spread of the COVID-19 started in Wuhan on December 31, 2019, and a powerful outbreak of the disease occurred there. According to the latest data, more than 165 million cases of COVID-19 infection have been detected in the world (last update May 19, 2021). In this paper, we propose a statistical study of COVID-19 pandemic in Egypt. This study will help us to understand and study the evolution of this pandemic. Moreover, documenting of accurate data and taken policies in Egypt can help other countries to deal with this epidemic, and it will also be useful in the event that other similar viruses emerge in the future. We will apply a widely used model in order to predict the number of COVID-19 cases in the coming period, which is the autoregressive integrated moving average (ARIMA) model. This model depicts the present behaviour of variables through linear relationship with their past values. The expected results will enable us to provide appropriate advice to decision-makers in Egypt on how to deal with this epidemic.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250149
Author(s):  
Fuad A. Awwad ◽  
Moataz A. Mohamoud ◽  
Mohamed R. Abonazel

The novel coronavirus COVID-19 is spreading across the globe. By 30 Sep 2020, the World Health Organization (WHO) announced that the number of cases worldwide had reached 34 million with more than one million deaths. The Kingdom of Saudi Arabia (KSA) registered the first case of COVID-19 on 2 Mar 2020. Since then, the number of infections has been increasing gradually on a daily basis. On 20 Sep 2020, the KSA reported 334,605 cases, with 319,154 recoveries and 4,768 deaths. The KSA has taken several measures to control the spread of COVID-19, especially during the Umrah and Hajj events of 1441, including stopping Umrah and performing this year’s Hajj in reduced numbers from within the Kingdom, and imposing a curfew on the cities of the Kingdom from 23 Mar to 28 May 2020. In this article, two statistical models were used to measure the impact of the curfew on the spread of COVID-19 in KSA. The two models are Autoregressive Integrated Moving Average (ARIMA) model and Spatial Time-Autoregressive Integrated Moving Average (STARIMA) model. We used the data obtained from 31 May to 11 October 2020 to assess the model of STARIMA for the COVID-19 confirmation cases in (Makkah, Jeddah, and Taif) in KSA. The results show that STARIMA models are more reliable in forecasting future epidemics of COVID-19 than ARIMA models. We demonstrated the preference of STARIMA models over ARIMA models during the period in which the curfew was lifted.


2020 ◽  
Vol 10 (2) ◽  
pp. 76-80
Author(s):  
Roro Kushartanti ◽  
Maulina Latifah

ARIMA is a forecasting method time series that does not require a specific data pattern. This study aims to analyze the forecasting of Semarang City DHF cases specifically in the Rowosari Community Health Center. The study used monthly data on DHF cases in the Rowosari Community Health Center in 2016, 2017, and 2019 as many as 36 dengue case data. The best ARIMA model for forecasting is a model that meets the requirements for parameter significance, white noise and has the MAPE (Mean Absolute Percentage Error Smallest) value. The results of the analysis show that the best model for predicting the number of dengue cases in the Rowosari Public Health Center Semarang is the ARIMA model (1,0,0) with a MAPE value of 43.98% and a significance coefficient of 0.353, meaning that this model is suitable and feasible to be used as a forecasting model. DHF cases in the Rowosari Community Health Center in Semarang City.


Author(s):  
Amin Zeynolabedin ◽  
Reza Ghiassi ◽  
Moharram Dolatshahi Pirooz

Abstract Seawater intrusion is one of the most serious issues to threaten coastal aquifers. Tourian aquifer, which is selected as the case study, is located in Qeshm Island, Persian Gulf. In this study, first the vulnerability of the region to seawater intrusion is assessed using chloride ion concentration value, then by using the autoregressive integrated moving average (ARIMA) model, the vulnerability of the region is predicted for 14 wells in 2018. The results show that the Tourian aquifer experiences moderate vulnerability and the area affected by seawater intrusion is wide and is in danger of expanding. It is also found that 0.95 km2 of the region is in a state of high vulnerability with Cl concentration being in a dangerous condition. The prediction model shows that ARIMA (2,1,1) is the best model with mean absolute error of 13.3 mg/L and Nash–Sutcliffe value of 0.81. For fitted and predicted data, mean square error is evaluated as 235.3 and 264.3, respectively. The prediction results show that vulnerability is increasing through the years.


2018 ◽  
Vol 73 ◽  
pp. 12010 ◽  
Author(s):  
Yenni P. Pasaribu ◽  
Hariani Fitrianti ◽  
Dessy Rizki Suryani

Climate is an important element for human life, one of them is to agriculture sector. Global climate change leads to increased frequency and extreme climatic intensity such as storms, floods, and droughts. Rainfall is climate factor that causes the failure of harvest in Merauke. Therefore, rainfall forecast information is very useful in anticipating the occurrence of extreme events that can lead to crop failure. The purpose of this research is to model rainfall using autoregressive integrated moving average (ARIMA) model. The ARIMA model can be used to predict future events using a set of past data, including predicting rainfall. This research was conducted by collecting secondary data from Agency of Meteorology, Climatology, and Geophysics (BMKG) from 2005 until 2017, then the data was analyzed using R.3.4.2. software. The analysis result showed that ARIMA model (2.0,2) as the right model to predict rainfall in Merauke. The result of forecasting based on ARIMA model (2.0,2) for one period ahead is 179 mm of average rainfall, 46 mm of minimum rainfall, and 295 mm of maximum rainfall. Thus it can be concluded that the intensity of rainfall in Merauke has decreased and there was a seasonal shift from the previous period.


Sign in / Sign up

Export Citation Format

Share Document