scholarly journals Estimating COVID-19 cases in Makkah region of Saudi Arabia: Space-time ARIMA modeling

PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250149
Author(s):  
Fuad A. Awwad ◽  
Moataz A. Mohamoud ◽  
Mohamed R. Abonazel

The novel coronavirus COVID-19 is spreading across the globe. By 30 Sep 2020, the World Health Organization (WHO) announced that the number of cases worldwide had reached 34 million with more than one million deaths. The Kingdom of Saudi Arabia (KSA) registered the first case of COVID-19 on 2 Mar 2020. Since then, the number of infections has been increasing gradually on a daily basis. On 20 Sep 2020, the KSA reported 334,605 cases, with 319,154 recoveries and 4,768 deaths. The KSA has taken several measures to control the spread of COVID-19, especially during the Umrah and Hajj events of 1441, including stopping Umrah and performing this year’s Hajj in reduced numbers from within the Kingdom, and imposing a curfew on the cities of the Kingdom from 23 Mar to 28 May 2020. In this article, two statistical models were used to measure the impact of the curfew on the spread of COVID-19 in KSA. The two models are Autoregressive Integrated Moving Average (ARIMA) model and Spatial Time-Autoregressive Integrated Moving Average (STARIMA) model. We used the data obtained from 31 May to 11 October 2020 to assess the model of STARIMA for the COVID-19 confirmation cases in (Makkah, Jeddah, and Taif) in KSA. The results show that STARIMA models are more reliable in forecasting future epidemics of COVID-19 than ARIMA models. We demonstrated the preference of STARIMA models over ARIMA models during the period in which the curfew was lifted.

2019 ◽  
Vol 4 (3) ◽  
pp. 58
Author(s):  
Lu Qin ◽  
Kyle Shanks ◽  
Glenn Allen Phillips ◽  
Daphne Bernard

The Autoregressive Integrated Moving Average model (ARIMA) is a popular time-series model used to predict future trends in economics, energy markets, and stock markets. It has not been widely applied to enrollment forecasting in higher education. The accuracy of the ARIMA model heavily relies on the length of time series. Researchers and practitioners often utilize the most recent - to -years of historical data to predict future enrollment; however, the accuracy of enrollment projection under different lengths of time series has never been investigated and compared. A simulation and an empirical study were conducted to thoroughly investigate the accuracy of ARIMA forecasting under four different lengths of time series. When the ARIMA model completely captured the historical changing trajectories, it provided the most accurate predictions of student enrollment with 20-years of historical data and had the lowest forecasting accuracy with the shortest time series. The results of this paper contribute as a reference to studies in the enrollment projection and time-series forecasting. It provides a practical impact on enrollment strategies, budges plans, and financial aid policies at colleges and institutions across countries.


Author(s):  
Abhiram Dash ◽  
A. Mangaraju ◽  
Pradeep Mishra ◽  
H. Nayak

Cereals are the most important kharif season crop in Odisha. The present study was carried out to forecast the production of kharif cereals in Odisha by using the forecast values of area and yield of kharif cereals obtained from the selected best fit Autoregressive Integrated Moving Average (ARIMA) model. The data from 1970-71 to 2010-11 are considered as training set data and used for model building and from 2011-12 to 2015-16 are considered as testing set data and used for cross-validation of the selected model on the basis of the absolute percentage error. The ARIMA models are fitted to the stationary data which may be the original data or the differenced data. The different ARIMA models are evaluated on the basis of Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) at various lags. The possible ARIMA models are selected on the basis of significant coefficient of autoregressive and moving average components by using the training set data. The best fitted models are then selected on the basis of residual diagnostics test and model fit statistics. The ARIMA model found to be best fitted for area under kharif cereals and yield of kharif cereals are ARIMA (1,1,0) without constant and ARIMA (0,1,2) without constant respectively which are successfully cross-validated with the testing set data. The respective best fit ARIMA model has been used to forecast the area and yield of kharif cereals for the years 2016-17, 2017-18 and 2018-19. The forecast values of area shows a decrease, whereas, the forecast values of yield shows an increase. The decrease in area might have been the result of limited availability of area for cereals due to shifting towards non-food grain crops. The forecast values of production of kharif cereals obtained from the forecast values of area and yield of kharif cereals shows an increase which is due to the increase in forecast values of yield. Since there is limited scope for area expansion, the future production of kharif cereals can only be increased by increasing the yield to achieve the goal of food security for the growing population.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254137
Author(s):  
Muhammad Adam Norrulashikin ◽  
Fadhilah Yusof ◽  
Nur Hanani Mohd Hanafiah ◽  
Siti Mariam Norrulashikin

The increasing trend in the number new cases of influenza every year as reported by WHO is concerning, especially in Malaysia. To date, there is no local research under healthcare sector that implements the time series forecasting methods to predict future disease outbreak in Malaysia, specifically influenza. Addressing the problem could increase awareness of the disease and could help healthcare workers to be more prepared in preventing the widespread of the disease. This paper intends to perform a hybrid ARIMA-SVR approach in forecasting monthly influenza cases in Malaysia. Autoregressive Integrated Moving Average (ARIMA) model (using Box-Jenkins method) and Support Vector Regression (SVR) model were used to capture the linear and nonlinear components in the monthly influenza cases, respectively. It was forecasted that the performance of the hybrid model would improve. The data from World Health Organization (WHO) websites consisting of weekly Influenza Serology A cases in Malaysia from the year 2006 until 2019 have been used for this study. The data were recategorized into monthly data. The findings of the study showed that the monthly influenza cases could be efficiently forecasted using three comparator models as all models outperformed the benchmark model (Naïve model). However, SVR with linear kernel produced the lowest values of RMSE and MAE for the test dataset suggesting the best performance out of the other comparators. This suggested that SVR has the potential to produce more consistent results in forecasting future values when compared with ARIMA and the ARIMA-SVR hybrid model.


Author(s):  
Gaetano Perone

AbstractCoronavirus disease (COVID-2019) is a severe ongoing novel pandemic that is spreading quickly across the world. Italy, that is widely considered one of the main epicenters of the pandemic, has registered the highest COVID-2019 death rates and death toll in the world, to the present day. In this article I estimate an autoregressive integrated moving average (ARIMA) model to forecast the epidemic trend over the period after April 4, 2020, by using the Italian epidemiological data at national and regional level. The data refer to the number of daily confirmed cases officially registered by the Italian Ministry of Health (www.salute.gov.it) for the period February 20 to April 4, 2020. The main advantage of this model is that it is easy to manage and fit. Moreover, it may give a first understanding of the basic trends, by suggesting the hypothetic epidemic’s inflection point and final size.Highlights❖ARIMA models allow in an easy way to investigate COVID-2019 trends, which are nowadays of huge economic and social impact.❖These data may be used by the health authority to continuously monitor the epidemic and to better allocate the available resources.❖The results suggest that the epidemic spread inflection point, in term of cumulative cases, will be reached at the end of May.❖Further useful and more precise forecasting may be provided by updating these data or applying the model to other regions and countries.


Antibiotics ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 423
Author(s):  
Paula Rojas ◽  
Fernando Antoñanzas

In 2013, a change in copayment rate was introduced in the Basque Country (one year later than in the other regions in Spain), and improvements were made to drug packaging. In 2014, a National Program Against Bacterial Resistance (Spanish abbreviation: PRAN) was approved. The aim of this study is to analyze the impact of change to the copayment rate, the adjustment of drug packaging, and the approval of PRAN on the consumption of antibiotics. Raw monthly data on the consumption of antibiotics (costs, packages, and daily defined doses per thousand people (DID)) were collected from January 2009 to December 2018 in the Basque Country. Counterfactual and intervention analysis (Autoregressive integrated moving average (ARIMA) model) was performed for the total series, disaggregated by group of antibiotics (2019 WHO Access, Watch, and Reserve (AWaRe) Classification) and active substances with the highest cost per prescription (cefditoren and moxifloxacin), the lowest cost per prescription (doxycycline and cloxacillin), and the most prescribed active ingredients (amoxicillin, azithromycin, and levofloxacin). Introduction of copayment led to a ‘stockpiling effect’ one month before its implementation, equal to 8% in the three consumption series analyzed. Only the adjustment of drug packaging significantly reduced the number of packages dispensed (−12.19%). PRAN approval reduced consumption by 0.779 DID (−4.51%), representing a significant decrease for both ’access’ and ’watch’ group antibiotics. Despite the delay in implementing changes to copayment, there was a ‘stockpiling effect’. With the adjustment of packaging, fewer packs were prescribed but with a higher drug load and price. PRAN approval reduced both the consumption of ’access group antibiotics’ (first-line treatment) and ’watch group antibiotics’ (second-line treatment).


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Loshini Thiruchelvam ◽  
Sarat Chandra Dass ◽  
Vijanth Sagayan Asirvadam ◽  
Hanita Daud ◽  
Balvinder Singh Gill

AbstractThe state of Selangor, in Malaysia consist of urban and peri-urban centres with good transportation system, and suitable temperature levels with high precipitations and humidity which make the state ideal for high number of dengue cases, annually. This study investigates if districts within the Selangor state do influence each other in determining pattern of dengue cases. Study compares two different models; the Autoregressive Integrated Moving Average (ARIMA) and Ensemble ARIMA models, using the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) measurement to gauge their performance tools. ARIMA model is developed using the epidemiological data of dengue cases, whereas ensemble ARIMA incorporates the neighbouring regions’ dengue models as the exogenous variable (X), into traditional ARIMA model. Ensemble ARIMA models have better model fit compared to the basic ARIMA models by incorporating neighbuoring effects of seven districts which made of state of Selangor. The AIC and BIC values of ensemble ARIMA models to be smaller compared to traditional ARIMA counterpart models. Thus, study concludes that pattern of dengue cases for a district is subject to spatial effects of its neighbouring districts and number of dengue cases in the surrounding areas.


Author(s):  
Leila L. Goedhals-Gerber

Background: Ports provide vital links in the maritime supply chains on which the trading of countries depend, and their efficiency and performance can contribute largely to the international competitiveness of those countries. However, to achieve and maintain such a contribution, port operators need to understand their role in a national economy and the factors that underlie the efficiency of the intermodal link that ports constitute in international supply chains. One such factor is the capacity of specialised cargo terminals.Objectives: This article described a possible technique for forecasting the throughput of grain imports through the bulk grain terminal at the Port of Cape Town. It determined whether the capacity in the bulk grain terminal is sufficient to handle current and forecasted volumes of imported grains or whether the volumes justify expansion or upgrading of the bulk grain terminal in the Port of Cape Town.Method: The Box–Jenkins methodology for autoregressive integrated moving average (ARIMA) models was applied. An ARIMA model – 2 parameter, 1 difference – was selected to do the forecast.Results: The average tonnage of all grains imported through the Port of Cape Town that can be expected in a month is approximately 90 000 tons. The maximum tonnage of all grains imported through the Port of Cape Town that can be expected in a month is approximately 180 000 tons.Conclusion: The analyses show that the demand for imports of grain products at the multipurpose terminal in the Port of Cape Town is not growing substantially. The analyses also identify that the current upper limits of grain imports are within the existing handling and storage capacities of the bulk grain terminal.


2019 ◽  
Vol 28 (3) ◽  
pp. 410-415 ◽  
Author(s):  
Izanara Cristine Pritsch ◽  
Emanoelli Cristini Augustinhak Stanula ◽  
Alan dos Anjos ◽  
José Alberto Bertot ◽  
Marcelo Beltrão Molento

Abstract In South America, fascioliasis caused by the trematode Fasciola hepatica is an anthropozoonosis disease associated with significant economic losses and poor animal welfare. The objective of this study was to determine the prevalence of F. hepatica in the liver of buffaloes slaughtered from 2003 to 2017 in Brazil, and to perform a forecast analysis of the disease for the next five years using the Autoregressive Integrated Moving Average (ARIMA) model. Data analysis revealed an incidence of 7,187 cases out of 226,561 individuals. The disease presented a considerable interannual variation (p<0.005). Fasciola hepatica was more prevalent in the southern states of Brazil; Paraná, Rio Grande do Sul, and Santa Catarina, presenting 11.9, 7.7, and 3.2% of infected livers, respectively. The high frequency of liver condemnation in Paraná was influenced by weather conditions. The ARIMA models calculated a constant trend of the disease, depicting an average of its future prevalence. The models also described a worse-case and a positive-case scenario, calculating the effects of intervention measurements. In reality, there is an urgent need for regular diagnostic in the animals (fecal and immune diagnose) and in the environment (intermediate host), in order to avoid the high rates of infection.


2021 ◽  
Vol 16 (1) ◽  
pp. 25-35
Author(s):  
Samir K. Safi ◽  
Olajide Idris Sanusi

The Auto Regressive Integrated Moving Average (ARIMA) model seems not to easily capture the nonlinear patterns exhibited by the 2019 novel coronavirus (COVID-19) in terms of daily confirmed cases. As a result, Artificial Neural Network (ANN) and Error, Trend, and Seasonality (ETS) modeling have been successfully applied to resolve problems with nonlinear estimation. Our research suggests that it would be ideal to use a single model of ETS or ARIMA for COVID-19 time series forecasting rather than a complicated Hybrid model that combines several models. We compare the forecasting performance of these models using real, worldwide, daily COVID-19 data for the period between January 22, 2020 till June 19, and June 20 till January 2, 2021 which marks two stages, each stage indicating the first and the second wave respectively. We discuss various forecasting approaches and the criteria for choosing the best forecasting technique. The best forecasting model selected was compared using the forecasting assessment criterion known as Mean Absolute Error (MAE). The empirical results show that the ETS and ARIMA models outperform the ANN and Hybrid models. The main finding from the ETS and ARIMA models analysis indicate that the magnitude of the increase in total confirmed cases over time is declining and the percentage change in the death rate is also on the decline. Our results shows that the chosen forecaste models are consistent during the first and second wave of of the pandemic. These forecasts are encouraging as the world struggles to contain the spread of COVID-19. This may be the result of the social distancing measures mandated by governments worldwide.


Sign in / Sign up

Export Citation Format

Share Document