scholarly journals THE EFFICACY OF POSACONAZOLE FOR PROPHYLAXIS OF INVASIVE MYCOSES IN PATIENTS WITH ACUTE MYELOID LEUKEMIA

2017 ◽  
pp. 118-124
Author(s):  
G. A. Klyasova ◽  
V. A. Okhmat ◽  
E. N. Parovichnikova ◽  
E. O. Gribanova ◽  
V. V. Troitskaya ◽  
...  

Efficacy of posaconazole for prophylaxis was evaluated in 77 chemotherapy cycles in 59 patients with acute myeloid leukemia (AML) aged 39 (17–62) years from 2012  till 2017. Posaconazole was given in oral suspension 200 mg three times a day after meal during chemotherapy cycle or on 1st  day after the cycle. Administration of posaconazole predominated in patients with de novo AML (84.5%) on 1st induction cycles (66.3%). Neutropenia was present in all patients with median duration of 22 days. Median duration of prophylaxis was 21  (2–57)  days. Posaconazole prophylaxis was interrupted in 28  (36.4%) of 77 cases, mainly due to diarrhea (28.6%). In 17 (61%) of 28 cases prophylaxis was resumed within a median of 3 days. In 72 (93.5%) of cases duration of posaconazole prophylaxis was ≥ 7 days, in 5 (6.5%) cases < 7 days. Efficacy of prophylaxis was evaluated in cases of posaconazole duration ≥ 7 days. Invasive pulmonary aspergillosis (probable) was in 2 (2.7%) of 72 cases. Administration of posaconazole with duration ≥ 7 days was in 46 cases on chemotherapy cycle, in 26 cases – on first day after the cycle. Patients using Posaconazole after a course of chemotherapy in comparison with patients receiving the drug in the first days of the course had significantly less interruptions of prophylaxis (11,5% vs 41,3%, p=0.009) and a reduction in duration of Posaconazole using (19 days vs 27 days, p=0.007).One case of invasive aspergillosis was registered in each group.We confirmed the  efficacy of posaconazole  for prophylaxis of invasive mycoses  in patients  with AML. Administration of posaconazole prophylaxis on first day after the end of chemotherapy cycle results in saving of drug by reducing duration of posaconazole using by 8 days and does not increase the incidence of invasive mycoses.

2017 ◽  
Vol 9 (2) ◽  
Author(s):  
Duygu Mert ◽  
Gülşen Iskender ◽  
Fazilet Duygu ◽  
Alparslan Merdin ◽  
Mehmet Sinan Dal ◽  
...  

Invasive pulmonary aspergillosis is most commonly seen in immunocompromised patients. Besides, skin lesions may also develop due to invasive aspergillosis in those patients. A 49-year-old male patient was diagnosed with acute myeloid leukemia. The patient developed bullous and zosteriform lesions on the skin after the 21st day of hospitalization. The skin biopsy showed hyphae. Disseminated skin aspergillosis was diagnosed to the patient. Voricanazole treatment was initiated. The patient was discharged once the lesions started to disappear.


Blood ◽  
2005 ◽  
Vol 105 (6) ◽  
pp. 2527-2534 ◽  
Author(s):  
Christian Récher ◽  
Odile Beyne-Rauzy ◽  
Cécile Demur ◽  
Gaëtan Chicanne ◽  
Cédric Dos Santos ◽  
...  

AbstractThe mammalian target of rapamycin (mTOR) is a key regulator of growth and survival in many cell types. Its constitutive activation has been involved in the pathogenesis of various cancers. In this study, we show that mTOR inhibition by rapamycin strongly inhibits the growth of the most immature acute myeloid leukemia (AML) cell lines through blockade in G0/G1 phase of the cell cycle. Accordingly, 2 downstream effectors of mTOR, 4E-BP1 and p70S6K, are phosphorylated in a rapamycin-sensitive manner in a series of 23 AML cases. Interestingly, the mTOR inhibitor markedly impairs the clonogenic properties of fresh AML cells while sparing normal hematopoietic progenitors. Moreover, rapamycin induces significant clinical responses in 4 of 9 patients with either refractory/relapsed de novo AML or secondary AML. Overall, our data strongly suggest that mTOR is aberrantly regulated in most AML cells and that rapamycin and analogs, by targeting the clonogenic compartment of the leukemic clone, may be used as new compounds in AML therapy.


2020 ◽  
Vol 38 (30) ◽  
pp. 3506-3517 ◽  
Author(s):  
Chong Chyn Chua ◽  
Andrew W. Roberts ◽  
John Reynolds ◽  
Chun Yew Fong ◽  
Stephen B. Ting ◽  
...  

PURPOSE The B-cell lymphoma 2 (BCL-2) inhibitor venetoclax has an emerging role in acute myeloid leukemia (AML), with promising response rates in combination with hypomethylating agents or low-dose cytarabine in older patients. The tolerability and efficacy of venetoclax in combination with intensive chemotherapy in AML is unknown. PATIENTS AND METHODS Patients with AML who were ≥ 65 years (≥ 60 years if monosomal karyotype) and fit for intensive chemotherapy were allocated to venetoclax dose-escalation cohorts (range, 50-600 mg). Venetoclax was administered orally for 14 days each cycle. During induction, a 7-day prephase/dose ramp-up (days −6 to 0) was followed by an additional 7 days of venetoclax combined with infusional cytarabine 100 mg/m2 on days 1-5 and idarubicin 12 mg/m2 intravenously on days 2-3 (ie, 5 + 2). Consolidation (4 cycles) included 14 days of venetoclax (days −6 to 7) combined with cytarabine (days 1-2) and idarubicin (day 1). Maintenance venetoclax was permitted (7 cycles). The primary objective was to assess the optimal dose schedule of venetoclax with 5 + 2. RESULTS Fifty-one patients with a median age of 72 years (range, 63-80 years) were included. The maximum tolerated dose was not reached with venetoclax 600 mg/day. The main grade ≥ 3 nonhematologic toxicities during induction were febrile neutropenia (55%) and sepsis (35%). In contrast to induction, platelet recovery was notably delayed during consolidation cycles. The overall response rate (complete remission [CR]/CR with incomplete count recovery) was 72%; it was 97% in de novo AML and was 43% in secondary AML. During the venetoclax prephase, marrow blast reductions (≥ 50%) were noted in NPM1-, IDH2-, and SRSF2-mutant AML. CONCLUSION Venetoclax combined with 5 + 2 induction chemotherapy was safe and tolerable in fit older patients with AML. Although the optimal postremission therapy remains to be determined, the high remission rate in de novo AML warrants additional investigation (ANZ Clinical Trial Registry No. ACTRN12616000445471).


1997 ◽  
Vol 15 (6) ◽  
pp. 2262-2268 ◽  
Author(s):  
M Wetzler ◽  
M R Baer ◽  
S H Bernstein ◽  
L Blumenson ◽  
C Stewart ◽  
...  

PURPOSE c-mpl, the human homolog of v-mpl, is the receptor for thrombopoietin. Given that c-mpl expression carries an adverse prognosis in myelodysplastic syndrome and given the prognostic significance of expression of other growth factor receptors in other diseases, we attempted to determine whether c-mp/mRNA expression is a prognostic factor in acute myeloid leukemia (AML). PATIENTS AND METHODS We analyzed bone marrow samples from 45 newly diagnosed AML patients by reverse-transcription polymerase chain reaction. RESULTS Samples from 27 patients (60%) expressed c-mpl mRNA (c-mpl+); their clinical and laboratory features were compared with those of the 18 patients without detectable levels of c-mpl(c-mpl-). No significant differences in age, sex, leukocyte count, French-American-British subtype, or karyotype group were found. c-mpl+ patients more commonly had secondary AML (41% v 11%; P = .046) and more commonly expressed CD34 (67% v 12%; P = .0004). There was no significant difference in complete remission (CR) rate. However, c-mpl+ patients had shorter CR durations (P = .008; median, 6.0 v > 17.0 months). This was true when only de novo AML patients were considered and when controlling for age, cytogenetics, or CD34 expression. There was a trend toward shorter survival in c-mpl+ patients (P = .058; median, 7.8 v 9.0 months). CONCLUSION These data suggest that c-mpl expression is an adverse prognostic factor for treatment outcome in adult AML that must be considered in the analysis of clinical studies using thrombopoietin in AML.


Blood ◽  
1997 ◽  
Vol 90 (11) ◽  
pp. 4532-4538 ◽  
Author(s):  
Krzysztof Mrózek ◽  
Kristiina Heinonen ◽  
David Lawrence ◽  
Andrew J. Carroll ◽  
Prasad R.K. Koduru ◽  
...  

Abstract Following reports of childhood acute myeloid leukemia (AML) showing that patients with t(9; 11)(p22; q23) have a better prognosis than those with translocations between 11q23 and other chromosomes, we compared response to therapy and survival of 24 adult de novo AML patients with t(9; 11) with those of 23 patients with other 11q23 translocations [t(11q23)]. Apart from a higher proportion of French-American-British (FAB) M5 subtype in the t(9; 11) group (83% v 43%, P = .006), the patients with t(9; 11) did not differ significantly from patients with t(11q23) in terms of their presenting clinical or hematologic features. Patients with t(9; 11) more frequently had an extra chromosome(s) 8 or 8q as secondary abnormalities (46% v 9%, P = .008). All patients received standard cytarabine and daunorubicin induction therapy, and most of them also received cytarabine-based intensification treatment. Two patients, both with t(9; 11), underwent bone marrow transplantation (BMT) in first complete remission (CR). Nineteen patients (79%) with t(9; 11) and 13 (57%) with t(11q23) achieved a CR (P = .13). The clinical outcome of patients with t(9; 11) was significantly better: the median CR duration was 10.7 versus 8.9 months (P = .02), median event-free survival was 6.2 versus 2.2 months (P = .009), and median survival was 13.2 versus 7.7 months (P = .009). All patients with t(11q23) have died, whereas seven (29%) patients with t(9; 11) remain alive in first CR. Seven of eight patients with t(9; 11) who received postremission regimens with cytarabine at a dose of 100 (four patients) or 400 mg/m2 (2 patients) or who did not receive postremission therapy (2 patients) have relapsed. In contrast, 7 (64%) of 11 patients who received intensive postremission chemotherapy with high-dose cytarabine (at a dose 3 g/m2) (5 patients), or underwent BMT (2 patients) remain in continuous CR. We conclude that the outcome of adults with de novo AML and t(9; 11) is more favorable than that of adults with other 11q23 translocations; this is especially true for t(9; 11) patients who receive intensive postremission therapy.


Blood ◽  
2011 ◽  
Vol 117 (7) ◽  
pp. 2137-2145 ◽  
Author(s):  
Sabine Kayser ◽  
Konstanze Döhner ◽  
Jürgen Krauter ◽  
Claus-Henning Köhne ◽  
Heinz A. Horst ◽  
...  

Abstract To study the characteristics and clinical impact of therapy-related acute myeloid leukemia (t-AML). 200 patients (7.0%) had t-AML and 2653 de novo AML (93%). Patients with t-AML were older (P < .0001) and they had lower white blood counts (P = .003) compared with de novo AML patients; t-AML patients had abnormal cytogenetics more frequently, with overrepresentation of 11q23 translocations as well as adverse cytogenetics, including complex and monosomal karyotypes, and with underrepresentation of intermediate-risk karyotypes (P < .0001); t-AML patients had NPM1 mutations (P < .0001) and FLT3 internal tandem duplications (P = .0005) less frequently. Younger age at diagnosis of primary malignancy and treatment with intercalating agents as well as topoisomerase II inhibitors were associated with shorter latency periods to the occurrence of t-AML. In multivariable analyses, t-AML was an adverse prognostic factor for death in complete remission but not relapse in younger intensively treated patients (P < .0001 and P = .39, respectively), relapse but not death in complete remission in older, less intensively treated patients (P = .02 and P = .22, respectively) and overall survival in younger intensively treated patients (P = .01). In more intensively treated younger adults, treatment-related toxicity had a major negative impact on outcome, possibly reflecting cumulative toxicity of cancer treatment.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4132-4132
Author(s):  
SuXia Geng ◽  
Xin Du ◽  
Jianyu Weng ◽  
Liye Zhong ◽  
Rong Guo ◽  
...  

Abstract Abstract 4132 The objective was to definite the expression level of aven mRNA of white blood cells from peripheral blood(PB)of de novo acute myeloid leukemia and preliminary analyze its clinical significance, providing a experimental basis for evaluating prognosis. Aven mRNA levels in PB samples from 69 AML patients were detected by using real-time quantitative PCR. The relation of aven mRNA level with clinical and hematological characteristics (age, sex, WBC, Hb, Plt, LDH, Blast% in PB and BM,FAB subtype) and treatment outcome (complete remission rate and relapse rate)were analyzed. Twenty-one normal individuals served as controls. The level of aven mRNA was between 11.72% and 178.93 %(median 37.2%) in de novo AML and between 10.81% and 50.98 %(median 28.81%) in normal individuals. Aven mRNA level was higher in the AML group than in the controls (p=0.006). When we compared aven mRNA with other clinical and hematological parameters, there were significant correlations between aven mRNA and age(r=0.25,p=0.039),aven mRNA and hemoglobin level (r=0.29,p=0.019),aven mRNA and FAB subtype(r=0.253,p=0.036). We found that median level of aven mRNA in group whose age older than median age was higher than group whose age younger than median level(p=0.018).The complete remission rate after two cycles chemotherapy in group with lower aven mRNA level(25/30,83.33%)was higher than group with higher aven mRNA level(21/30,70%). But the difference was not significant(p=0.22).The difference of aven mRNA expression level between AML patients with relapse and that without relapse was not significant (p=0.076). In conclusions, the level of aven mRNA in de novo AML is overexpression. The overexpression of aven mRNA is likely to play an important role in tumorigenesis of AML. Association of aven mRNA expression with treatment outcome and relapse was not observed. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3596-3596
Author(s):  
Georgia Voutiadou ◽  
Konstantina Kotta ◽  
Barbara Tachynopoulou ◽  
Apostolia Papalexandri ◽  
Chryssanthi Vadikolia ◽  
...  

Abstract Abstract 3596 Immune phenotyping plays a critical role in the diagnosis and classification of acute leukemia. Several studies have reported a variable proportion of patients with acute myeloid leukemia (AML) expressing lymphoid-associated antigens (LAA). The exact frequency and true clinical significance of this phenomenon remains undefined due to inconsistencies between series, likely related to methodological aspects or potential case selection biases. We retrospectively evaluated the expression of LAA in blast cells from 278 consecutive and unselected patients with AML diagnosed in our Department between 2002 and 2010. The patient cohort included 168 males and 110 females with a median age of 61 years (range, 10–88); 146/278 cases were above the age of 60. Within this cohort, 190 cases (68%) had de novo AML, whereas the remaining 88 cases (32%) concerned secondary AML (sAML) to either MDS (n=80) or other non-hematologic malignancies (n=8). Patients were treated uniformly according to age with Aracytin/Idarubicin induction regimens (“3+7” or “2+5” for ages \q60 or ≥60, respectively). The immunophenotype was determined by flow cytometric analysis of (mainly) bone marrow aspirate and/or peripheral blood samples utilizing a primary CD45/side scatter (SSC) gating procedure with antibodies against CD7, CD13, CD19, CD33, CD4, CD10, CD34, CD117, CD64, HLA-DR, CD20, CD2, CD15, CD56, CD14, CD8, MPO, CD3, CD79a, CD22, TdT and lysozyme; a cut-off value for positivity of 20% was adopted. Overall, we identified 153/278 cases (55%) expressing at least one LAA. The most commonly expressed LAAs were CD4 (outside AML with monocytic differentiation), CD56, CD7, CD2, CD10 and CD79a (in 39%, 33%, 29%, 14%, 10% and 8% of LAA+ AML cases, respectively); interestingly, all CD79a-positive cases co-expressed at least one more LAA. A significant association was identified between LAA expression and cytogenetic profile: in particular, at least one LAA was detected in 37/50 cases (74%) with adverse cytogenetics (SWOG unfavorable and/or monosomal karyotype), compared to 24/41 (58%) cytogenetically favorable cases and 68/134 (51%) cytogenetically intermediate risk cases (p=0.01). No other statistically significant associations were found for LAA expression (positive vs. negative) in respect to age and complete remission (CR) rate. Furthermore, the frequency of LAA-positive cases was identical (55%) in both de novo AML (105/190 cases) and sAML (48/88 cases). Monoparametric statistical analysis was also performed individually for each of the six more frequent LAAs. Significant associations (p<0.05) were identified between: (i) CD7 expression and adverse cytogenetics; (ii) CD10 expression and adverse cytogenetics as well as failure to achieve CR, at both cohort level as well as patients \q60 years with de novo AML; and (iii) CD2 expression and shorter overall and disease-free survival (DFS and OS, respectively). Cox-multivariate analysis identified CD2 expression in addition to advanced age, sAML and adverse cytogenetic profile as negative prognostic indicators (p=0.05) for both DFS and OS. In conclusion, expression of LAAs is frequent in AML, among both de novo AML and sAML cases, and significantly associated with adverse cytogenetics. Although the negative prognostic impact of CD2 expression is noteworthy, however, the precise prognostic implications of the expression of individual LAAs are hard to define on single institution retrospective series and will require evaluation in large prospective and well-controlled studies. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 3546-3546
Author(s):  
Michael W.M. Kühn ◽  
Lars Bullinger ◽  
Jennifer Edelmann ◽  
Jan Krönke ◽  
Gröschel Stefan ◽  
...  

Abstract Abstract 3546 Rearrangements of the mixed lineage leukemia (MLL) gene are associated with the development of acute leukemia, and a variety of translocation partners have been described to date. In acute myeloid leukemia (AML), the translocation t(9;11)(p22;q23), resulting in the MLLT3-MLL fusion gene, is the most common genetic event involving MLL. The translocation t(9;11) can occur de novo, or as a consequence of previous chemotherapy (t-AML). Both types exhibit significant biological and clinical heterogeneity, and cooperating genetic events have been implicated underlying these heterogeneous phenotypes. To identify additional genomic abnormalities in AML with t(9;11), we performed high-resolution, genome-wide analysis of DNA copy number alterations (CNA) and copy neutral loss of heterozygosity (CN-LOH) using Affymetrix 6.0 single nucleotide polymorphism (SNP) microarrays in 34 AMLs with t(9;11) [de novo AML, n=22; t-AML, n=12]. Samples were also analyzed for AML-associated mutations: FLT3 [internal tandem duplication (ITD; 2/33); tyrosine kinase domain (TKD; 2/26)], NPM1 (0/28), CEBPA (0/23), IDH1 (0/28), IDH 2 (0/28), DNMT3A (0/19), NRAS (0/6); and deregulated expression of EVI1 (8/16). Control DNA from remission bone marrow or peripheral blood was available for paired analysis in 12 (33%) cases. Data were processed using reference alignment, dChipSNP, and circular binary segmentation. Paired analysis revealed a mean of 1.9 somatic CNAs per case (range: 0–12); 45% of cases lacked any CNAs. Deletions were more common than gains (1.73 losses/case vs. 0.25 gains/case; p =0.04). There were no significant differences in the mean number of CNAs between de novo and therapy-related cases (de novo AML: 1.0, range: 0–2; t-AML: 2.7, range: 0–12; p =0.93). Recurrent deletions were detected at chromosomal bands 7q36.1–36.2 (n=2) and at the chromosomal translocation breakpoint at 11q23 (n=2). The del(7q36.1–36.2) overlapped with a minimally deleted region at 7q36.1 that we previously identified in 8% of core-binding factor AML containing only 4 genes (PRKAG2, GALNT11, GALNTL5 and MLL3). The only gene contained in both regions was MLL3, a member of the mixed-lineage leukemia gene family. The most recurrent CNA was trisomy 8 (n=5), also detected by conventional cytogenetics in all 5 cases. Novel recurrent focal gains were identified at 9p22.1 (n=2; size: 341 Kb) and at 13q21.33-q22.1 (n=2; size: 1021 Kb) with each region containing genes potentially involved in cancer pathogenesis (ACER2 in 9p; KLF5 in 13q). Analysis of CN-LOH revealed no such lesion in any of the cases. In summary, our data provide a comprehensive survey of CNAs in a well characterized cohort of AMLs with t(9;11). These data demonstrate a very low occurrence of CNAs, with no significant differences between de novo and therapy-related cases and complete absence of CN-LOH. Interestingly, a number of novel recurrent secondary genetic alterations were identified. Determining the functional role of these lesions in leukemogenesis and drug resistance should provide new insights into t(9;11)-bearing AMLs. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4870-4870
Author(s):  
Marta I Pereira ◽  
Ana I Espadana ◽  
Emília Cortesão ◽  
Gilberto P Marques ◽  
Catarina Geraldes ◽  
...  

Abstract Abstract 4870 Background: Dendritic cells (DC) are a heterogeneous population of lineage-negative antigen-presenting cells derived from CD34+ hematopoietic progenitors, present in tissue, blood and bone marrow (BM), where plasmacytoid DC (pDC) are a normal finding, representing 0.2 ± 0.1% of cell populations (Matarraz et al, 2010). DC neoplasms include solid tumors (such as DC sarcomas) and an entity classified by the World Health Organization (2008) as an acute myeloid leukemia (AML)-related precursor neoplasm: blastic pDC neoplasm/leukemia, an aggressive disease with poor prognosis, with no clinical trials to orient consensus regarding the most effective treatment; it is usually chemo-resistant, although some cases respond to AML-like regimens and allogeneic hematopoietic stem cell transplant. It is not clear if the presence of an increased DC population in non-DC AML confers pDC neoplasm-like biological characteristics to the former. Aims: This study aims to evaluate whether an increase in the size of DC populations in newly-diagnosed non-DC AML affects the latter's biological behavior, as represented by the overall survival (OS) of patients with the disease. Methods: We reviewed all AML diagnosed in our Hospital between January 1st 2008 and December 31st 2010, identifying 146 patients. We excluded 9 patients who had no flow cytometry immunophenotyping (IP) performed, and 7 whose first IP was performed after treatment was instituted. In that time frame, we also diagnosed 4 pDC neoplasms. Of the 130 patients included, 91 had their presenting IP performed on BM aspirate, while the remaining 39 were phenotyped on blood samples. The size of the DC populations and blastic DC maturation were determined on these samples. Patients were classified into 2 groups according to the size of the DC component; one (the Non-DC Group) had a DC component of up to 0.3% (in practice, the highest value in this group was 0.2%); the other (DC Group) had a percentage over this limit (the lowest value being 1.0%). OS data was determined for both groups; special consideration was given to age strata, separating patients under 65 years of age (Under-65) from those 65 or older (Over-65) and etiology (distinguishing de novo AML from AML secondary to therapy, myelodysplasia or myeloproliferative diseases). The percentage of DC identified by IP did not influence nor alter the type of treatment instituted. Results: We found that the presence of a DC component above the normal BM interval (as determined by Matarraz et al) was associated with a significantly decreased OS, with patients with DC components over 0.3% presenting with a median OS of 2.4 months (mean: 6.4 ± 1.6) and those with a component under 0.3% with a median OS of 8.6 months (mean: 17.0 ± 1.9) (p = 0.033). In our series, patients Over-65 had a median OS of 2.9 months (mean = 6.9 ± 1.0) and those Under-65 a median of 21.3 months (mean = 22.5 ± 2.5), p < 0.001. The differences in OS according to DC component were attenuated in patients Over-65 (median = 1.8 vs. 3.9 months, p = NS), whereas in patients Under-65 the median survival was 2.7 months (mean: 8.7 ± 2.9) for the DC Group and 24.4 months (mean: 24.3 ± 2.7) for the non-DC Group (p = 0.035). The differences in OS were also significant for de novo AML (median = 2.4 vs. 16.0 months, mean = 4.7 ± 1.9 vs. 20.5 ± 2.6, p = 0.017), but not statistically relevant for secondary AML (median = 4.4 vs. 5.5 months, mean = 8.4 vs. 10.8, p = NS). Discussion: In this study, we found that an increase in the size of the DC component as determined by IP at diagnosis on newly-diagnosed AML had a negative impact on prognosis, with a significant decrease in median and mean OS in patients with a percentage of DC over the upper limit of the normal interval. We also determined that the decreased survival was primarily attributed to the better-prognosis groups (patients under 65 and with de novo AML), whereas the effect of the worsened prognosis was attenuated in those patients with a bad prognosis at the outset (patients over 65 and with secondary AML). If data from DC neoplasms could be extrapolated, we could suggest that AML with increased DC components are less chemo-sensitive, which would explain the OS differences found in the Under-65 group, as well as the no-difference found in the Over-65 Group, which is frequently undertreated due to comorbidities. Conclusion: Our study suggests that the size of the DC component at diagnosis as determined by IP is a new prognostic marker predictive of decreased survival. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document