scholarly journals Machine Learning Algorithms in Fraud Detection: Case Study on Retail Consumer Financing Company

2021 ◽  
Vol 6 (2) ◽  
pp. 213
Author(s):  
Nadya Intan Mustika ◽  
Bagus Nenda ◽  
Dona Ramadhan

This study aims to implement a machine learning algorithm in detecting fraud based on historical data set in a retail consumer financing company. The outcome of machine learning is used as samples for the fraud detection team. Data analysis is performed through data processing, feature selection, hold-on methods, and accuracy testing. There are five machine learning methods applied in this study: Logistic Regression, K-Nearest Neighbor (KNN), Decision Tree, Random Forest, and Support Vector Machine (SVM). Historical data are divided into two groups: training data and test data. The results show that the Random Forest algorithm has the highest accuracy with a training score of 0.994999 and a test score of 0.745437. This means that the Random Forest algorithm is the most accurate method for detecting fraud. Further research is suggested to add more predictor variables to increase the accuracy value and apply this method to different financial institutions and different industries.

Recycling ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 65
Author(s):  
Ali Hewiagh ◽  
Kannan Ramakrishnan ◽  
Timothy Tzen Vun Yap ◽  
Ching Seong Tan

Online frauds have pernicious impacts on different system domains, including waste management systems. Fraudsters illegally obtain rewards for their recycling activities or avoid penalties for those who are required to recycle their own waste. Although some approaches have been introduced to prevent such fraudulent activities, the fraudsters continuously seek new ways to commit illegal actions. Machine learning technology has shown significant and impressive results in identifying new online fraud patterns in different system domains such as e-commerce, insurance, and banking. The purpose of this paper, therefore, is to analyze a waste management system and develop a machine learning model to detect fraud in the system. The intended system allows consumers, individuals, and organizations to track, monitor, and update their performance in their recycling activities. The data set provided by a waste management organization is used for the analysis and the model training. This data set contains transactions of users’ recycling activities and behaviors. Three machine learning algorithms, random forest, support vector machine, and multi-layer perceptron are used in the experiments and the best detection model is selected based on the model’s performance. Results show that each of these algorithms can be used for fraud detection in waste managements with high accuracy. The random forest algorithm produces the optimal model with an accuracy of 96.33%, F1-score of 95.20%, and ROC of 98.92%.


2020 ◽  
Vol 8 (6) ◽  
pp. 4684-4688

Per the statistics received from BBC, data varies for every earthquake occurred till date. Approximately, up to thousands are dead, about 50,000 are injured, around 1-3 Million are dislocated, while a significant amount go missing and homeless. Almost 100% structural damage is experienced. It also affects the economic loss, varying from 10 to 16 million dollars. A magnitude corresponding to 5 and above is classified as deadliest. The most life-threatening earthquake occurred till date took place in Indonesia where about 3 million were dead, 1-2 million were injured and the structural damage accounted to 100%. Hence, the consequences of earthquake are devastating and are not limited to loss and damage of living as well as nonliving, but it also causes significant amount of change-from surrounding and lifestyle to economic. Every such parameter desiderates into forecasting earthquake. A couple of minutes’ notice and individuals can act to shield themselves from damage and demise; can decrease harm and monetary misfortunes, and property, characteristic assets can be secured. In current scenario, an accurate forecaster is designed and developed, a system that will forecast the catastrophe. It focuses on detecting early signs of earthquake by using machine learning algorithms. System is entitled to basic steps of developing learning systems along with life cycle of data science. Data-sets for Indian sub-continental along with rest of the World are collected from government sources. Pre-processing of data is followed by construction of stacking model that combines Random Forest and Support Vector Machine Algorithms. Algorithms develop this mathematical model reliant on “training data-set”. Model looks for pattern that leads to catastrophe and adapt to it in its building, so as to settle on choices and forecasts without being expressly customized to play out the task. After forecast, we broadcast the message to government officials and across various platforms. The focus of information to obtain is keenly represented by the 3 factors – Time, Locality and Magnitude.


2021 ◽  
Author(s):  
Aayushi Rathore ◽  
Anu Saini ◽  
Navjot Kaur ◽  
Aparna Singh ◽  
Ojasvi Dutta ◽  
...  

ABSTRACTSepsis is a severe infectious disease with high mortality, and it occurs when chemicals released in the bloodstream to fight an infection trigger inflammation throughout the body and it can cause a cascade of changes that damage multiple organ systems, leading them to fail, even resulting in death. In order to reduce the possibility of sepsis or infection antiseptics are used and process is known as antisepsis. Antiseptic peptides (ASPs) show properties similar to antigram-negative peptides, antigram-positive peptides and many more. Machine learning algorithms are useful in screening and identification of therapeutic peptides and thus provide initial filters or built confidence before using time consuming and laborious experimental approaches. In this study, various machine learning algorithms like Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbour (KNN) and Logistic Regression (LR) were evaluated for prediction of ASPs. Moreover, the characteristics physicochemical features of ASPs were also explored to use them in machine learning. Both manual and automatic feature selection methodology was employed to achieve best performance of machine learning algorithms. A 5-fold cross validation and independent data set validation proved RF as the best model for prediction of ASPs. Our RF model showed an accuracy of 97%, Matthew’s Correlation Coefficient (MCC) of 0.93, which are indication of a robust and good model. To our knowledge this is the first attempt to build a machine learning classifier for prediction of ASPs.


Author(s):  
Soroor Karimi ◽  
Bohan Xu ◽  
Alireza Asgharpour ◽  
Siamack A. Shirazi ◽  
Sandip Sen

Abstract AI approaches include machine learning algorithms in which models are trained from existing data to predict the behavior of the system for previously unseen cases. Recent studies at the Erosion/Corrosion Research Center (E/CRC) have shown that these methods can be quite effective in predicting erosion. However, these methods are not widely used in the engineering industries due to the lack of work and information in this area. Moreover, in most of the available literature, the reported models and results have not been rigorously tested. This fact suggests that these models cannot be fully trusted for the applications for which they are trained. Therefore, in this study three machine learning models, including Elastic Net, Random Forest and Support Vector Machine (SVM), are utilized to increase the confidence in these tools. First, these models are trained with a training data set. Next, the model hyper-parameters are optimized by using nested cross validation. Finally, the results are verified with a test data set. This process is repeated several times to assure the accuracy of the results. In order to be able to predict the erosion under different conditions with these three models, six main variables are considered in the training data set. These variables include material hardness, pipe diameter, particle size, liquid viscosity, liquid superficial velocity, and gas superficial velocity. All three studied models show good prediction performances. The Random Forest and SVM approaches, however, show slightly better results compared to Elastic Net. The performance of these models is compared to both CFD erosion simulation results and also to Sand Production Pipe Saver (SPPS) results, a mechanistic erosion prediction software developed at the E/CRC. The comparison shows SVM prediction has a better match with both CFD and SPPS. The application of AI model to determine the uncertainty of calculated erosion is also discussed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yantao Ma ◽  
Jun Ji ◽  
Yun Huang ◽  
Huimin Gao ◽  
Zhiying Li ◽  
...  

AbstractBipolar disorder (BPD) is often confused with major depression, and current diagnostic questionnaires are subjective and time intensive. The aim of this study was to develop a new Bipolar Diagnosis Checklist in Chinese (BDCC) by using machine learning to shorten the Affective Disorder Evaluation scale (ADE) based on an analysis of registered Chinese multisite cohort data. In order to evaluate the importance of each item of the ADE, a case-control study of 360 bipolar disorder (BPD) patients, 255 major depressive disorder (MDD) patients and 228 healthy (no psychiatric diagnosis) controls (HCs) was conducted, spanning 9 Chinese health facilities participating in the Comprehensive Assessment and Follow-up Descriptive Study on Bipolar Disorder (CAFÉ-BD). The BDCC was formed by selected items from the ADE according to their importance as calculated by a random forest machine learning algorithm. Five classical machine learning algorithms, namely, a random forest algorithm, support vector regression (SVR), the least absolute shrinkage and selection operator (LASSO), linear discriminant analysis (LDA) and logistic regression, were used to retrospectively analyze the aforementioned cohort data to shorten the ADE. Regarding the area under the receiver operating characteristic (ROC) curve (AUC), the BDCC had high AUCs of 0.948, 0.921, and 0.923 for the diagnosis of MDD, BPD, and HC, respectively, despite containing only 15% (17/113) of the items from the ADE. Traditional scales can be shortened using machine learning analysis. By shortening the ADE using a random forest algorithm, we generated the BDCC, which can be more easily applied in clinical practice to effectively enhance both BPD and MDD diagnosis.


Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 104 ◽  
Author(s):  
Ahmed ◽  
Yigit ◽  
Isik ◽  
Alpkocak

Leukemia is a fatal cancer and has two main types: Acute and chronic. Each type has two more subtypes: Lymphoid and myeloid. Hence, in total, there are four subtypes of leukemia. This study proposes a new approach for diagnosis of all subtypes of leukemia from microscopic blood cell images using convolutional neural networks (CNN), which requires a large training data set. Therefore, we also investigated the effects of data augmentation for an increasing number of training samples synthetically. We used two publicly available leukemia data sources: ALL-IDB and ASH Image Bank. Next, we applied seven different image transformation techniques as data augmentation. We designed a CNN architecture capable of recognizing all subtypes of leukemia. Besides, we also explored other well-known machine learning algorithms such as naive Bayes, support vector machine, k-nearest neighbor, and decision tree. To evaluate our approach, we set up a set of experiments and used 5-fold cross-validation. The results we obtained from experiments showed that our CNN model performance has 88.25% and 81.74% accuracy, in leukemia versus healthy and multiclass classification of all subtypes, respectively. Finally, we also showed that the CNN model has a better performance than other wellknown machine learning algorithms.


2019 ◽  
Vol 20 (S2) ◽  
Author(s):  
Varun Khanna ◽  
Lei Li ◽  
Johnson Fung ◽  
Shoba Ranganathan ◽  
Nikolai Petrovsky

Abstract Background Toll-like receptor 9 is a key innate immune receptor involved in detecting infectious diseases and cancer. TLR9 activates the innate immune system following the recognition of single-stranded DNA oligonucleotides (ODN) containing unmethylated cytosine-guanine (CpG) motifs. Due to the considerable number of rotatable bonds in ODNs, high-throughput in silico screening for potential TLR9 activity via traditional structure-based virtual screening approaches of CpG ODNs is challenging. In the current study, we present a machine learning based method for predicting novel mouse TLR9 (mTLR9) agonists based on features including count and position of motifs, the distance between the motifs and graphically derived features such as the radius of gyration and moment of Inertia. We employed an in-house experimentally validated dataset of 396 single-stranded synthetic ODNs, to compare the results of five machine learning algorithms. Since the dataset was highly imbalanced, we used an ensemble learning approach based on repeated random down-sampling. Results Using in-house experimental TLR9 activity data we found that random forest algorithm outperformed other algorithms for our dataset for TLR9 activity prediction. Therefore, we developed a cross-validated ensemble classifier of 20 random forest models. The average Matthews correlation coefficient and balanced accuracy of our ensemble classifier in test samples was 0.61 and 80.0%, respectively, with the maximum balanced accuracy and Matthews correlation coefficient of 87.0% and 0.75, respectively. We confirmed common sequence motifs including ‘CC’, ‘GG’,‘AG’, ‘CCCG’ and ‘CGGC’ were overrepresented in mTLR9 agonists. Predictions on 6000 randomly generated ODNs were ranked and the top 100 ODNs were synthesized and experimentally tested for activity in a mTLR9 reporter cell assay, with 91 of the 100 selected ODNs showing high activity, confirming the accuracy of the model in predicting mTLR9 activity. Conclusion We combined repeated random down-sampling with random forest to overcome the class imbalance problem and achieved promising results. Overall, we showed that the random forest algorithm outperformed other machine learning algorithms including support vector machines, shrinkage discriminant analysis, gradient boosting machine and neural networks. Due to its predictive performance and simplicity, the random forest technique is a useful method for prediction of mTLR9 ODN agonists.


2021 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
S. L. Ávila ◽  
H. M. Schaberle ◽  
S. Youssef ◽  
F. S. Pacheco ◽  
C. A. Penz

The health of a rotating electric machine can be evaluated by monitoring electrical and mechanical parameters. As more information is available, it easier can become the diagnosis of the machine operational condition. We built a laboratory test bench to study rotor unbalance issues according to ISO standards. Using the electric stator current harmonic analysis, this paper presents a comparison study among Support-Vector Machines, Decision Tree classifies, and One-vs-One strategy to identify rotor unbalance kind and severity problem – a nonlinear multiclass task. Moreover, we propose a methodology to update the classifier for dealing better with changes produced by environmental variations and natural machinery usage. The adaptative update means to update the training data set with an amount of recent data, saving the entire original historical data. It is relevant for engineering maintenance. Our results show that the current signature analysis is appropriate to identify the type and severity of the rotor unbalance problem. Moreover, we show that machine learning techniques can be effective for an industrial application.


2020 ◽  
Vol 8 (6) ◽  
pp. 1623-1630

As huge amount of data accumulating currently, Challenges to draw out the required amount of data from available information is needed. Machine learning contributes to various fields. The fast-growing population caused the evolution of a wide range of diseases. This intern resulted in the need for the machine learning model that uses the patient's datasets. From different sources of datasets analysis, cancer is the most hazardous disease, it may cause the death of the forbearer. The outcome of the conducted surveys states cancer can be nearly cured in the initial stages and it may also cause the death of an affected person in later stages. One of the major types of cancer is lung cancer. It highly depends on the past data which requires detection in early stages. The recommended work is based on the machine learning algorithm for grouping the individual details into categories to predict whether they are going to expose to cancer in the early stage itself. Random forest algorithm is implemented, it results in more efficiency of 97% compare to KNN and Naive Bayes. Further, the KNN algorithm doesn't learn anything from training data but uses it for classification. Naive Bayes results in the inaccuracy of prediction. The proposed system is for predicting the chances of lung cancer by displaying three levels namely low, medium, and high. Thus, mortality rates can be reduced significantly.


2021 ◽  
Vol 8 (3) ◽  
pp. 209-221
Author(s):  
Li-Li Wei ◽  
Yue-Shuai Pan ◽  
Yan Zhang ◽  
Kai Chen ◽  
Hao-Yu Wang ◽  
...  

Abstract Objective To study the application of a machine learning algorithm for predicting gestational diabetes mellitus (GDM) in early pregnancy. Methods This study identified indicators related to GDM through a literature review and expert discussion. Pregnant women who had attended medical institutions for an antenatal examination from November 2017 to August 2018 were selected for analysis, and the collected indicators were retrospectively analyzed. Based on Python, the indicators were classified and modeled using a random forest regression algorithm, and the performance of the prediction model was analyzed. Results We obtained 4806 analyzable data from 1625 pregnant women. Among these, 3265 samples with all 67 indicators were used to establish data set F1; 4806 samples with 38 identical indicators were used to establish data set F2. Each of F1 and F2 was used for training the random forest algorithm. The overall predictive accuracy of the F1 model was 93.10%, area under the receiver operating characteristic curve (AUC) was 0.66, and the predictive accuracy of GDM-positive cases was 37.10%. The corresponding values for the F2 model were 88.70%, 0.87, and 79.44%. The results thus showed that the F2 prediction model performed better than the F1 model. To explore the impact of sacrificial indicators on GDM prediction, the F3 data set was established using 3265 samples (F1) with 38 indicators (F2). After training, the overall predictive accuracy of the F3 model was 91.60%, AUC was 0.58, and the predictive accuracy of positive cases was 15.85%. Conclusions In this study, a model for predicting GDM with several input variables (e.g., physical examination, past history, personal history, family history, and laboratory indicators) was established using a random forest regression algorithm. The trained prediction model exhibited a good performance and is valuable as a reference for predicting GDM in women at an early stage of pregnancy. In addition, there are certain requirements for the proportions of negative and positive cases in sample data sets when the random forest algorithm is applied to the early prediction of GDM.


Sign in / Sign up

Export Citation Format

Share Document