scholarly journals Vibration and post-buckling of a functionally graded beam subjected to non-conservative forces

2016 ◽  
Vol 18 (8) ◽  
pp. 4901-4913
Author(s):  
Qing Lu Li ◽  
Jing Hua Zhang
2011 ◽  
Vol 250-253 ◽  
pp. 266-270
Author(s):  
Qing Lu Li ◽  
Shi Rong Li

Based on the large deformation theory and considering the axial extension of the beam, the governing equations of post-buckling of a simply supported elastic FGM beam subjected to conservative and non-conservative distributed forces were established. In the analysis, it was assumed that the material properties of the beam vary continuously as a power function of the thickness coordinate. By using shooting method, the nonlinear boundary-value problem was solved numerically and the equilibrium paths as well as the post- buckling configurations of the deformed beam were presented. A comparison between the results of conservative system and that of non-conservative systems were given. The results shows that the features of the equilibrium paths of the the functionally graded beam under non-conservative are evidently different from those to a conservative one.


Author(s):  
Shengbo Zhu ◽  
Zhenzhen Tong ◽  
Jiabin Sun ◽  
Qingdong Li ◽  
Zhenhuan Zhou ◽  
...  

2010 ◽  
Vol 123-125 ◽  
pp. 280-283
Author(s):  
Chang Yull Lee ◽  
Ji Hwan Kim

The post-buckling of the functionally graded composite plate under thermal environment with aerodynamic loading is studied. The structural model has three layers with ceramic, FGM and metal, respectively. The outer layers of the sandwich plate are different homogeneous and isotropic material properties for ceramic and metal. Whereas the core is FGM layer, material properties vary continuously from one interface to the other in the thickness direction according to a simple power law distribution in terms of the volume fractions. Governing equations are derived by using the principle of virtual work and numerical solutions are solved through a finite element method. The first-order shear deformation theory and von-Karman strain-displacement relations are based to derive governing equations of the plate. Aerodynamic effects are dealt by adopting nonlinear third-order piston theory for structural and aerodynamic nonlinearity. The Newton-Raphson iterative method applied for solving the nonlinear equations of the thermal post-buckling analysis


2021 ◽  
Vol 21 (2) ◽  
pp. 7-11
Author(s):  
Ahmed Mansoor Abbood ◽  
Haider K. Mehbes ◽  
Abdulkareem. F. Hasan

In this study, glass-filled epoxy functionally graded material (FGM) was prepared by adopting the hand lay-up method. The vertical gravity casting was used to produce a continuous variation in elastic properties. A 30 % volume fraction of glass ingredients that have mean diameter 90 μm was spread in epoxy resin (ρ = 1050 kg/m3). The mechanical properties of FGM were evaluated according to ASTM D638. Experimental results showed that a gradually relationship between Young’s modulus and volume fraction of glass particles, where the value of Young’s modulus at high concentration of glass particles was greater than that at low concentration, while the value of Poisson’s ratio at high concentration of glass particles was lower than that at low concentration. The manufacture of this FG beam is particularly important and useful in order to benefit from it in the field of various fracture tests under dynamic or cyclic loads.


2018 ◽  
Vol 10 (09) ◽  
pp. 1850098 ◽  
Author(s):  
Peng Zhou ◽  
Ying Liu ◽  
Xiaoyan Liang

The objective of this paper is to investigate the large deflection of a slender functionally graded beam under the transverse loading. Firstly, by modeling the functionally graded beam as a layered structure with graded yield strength, a unified yield criterion for a functionally graded metallic beam is established. Based on the proposed yielding criteria, analytical solutions (AS) for the large deflections of fully clamped functionally graded beams subjected to transverse loading are formulated. Comparisons between the present solutions with numerical results are made and good agreements are found. The effects of gradient profile and gradient intensity factor on the large deflections of functionally graded beams are discussed in detail. The reliability of the present analytical model is demonstrated, and the larger the gradient variation ratio near the loading surface is, the more accurate the layer-graded beam model will be.


Sign in / Sign up

Export Citation Format

Share Document