scholarly journals The Winter Activity of the Endemic Lizard Species, Anatololacerta danfordi (Günther, 1876)

Author(s):  
Hatice ÖZKAN ◽  
Ufuk BÜLBÜL
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. Laspiur ◽  
J. C. Santos ◽  
S. M. Medina ◽  
J. E. Pizarro ◽  
E. A. Sanabria ◽  
...  

AbstractGiven the rapid loss of biodiversity as consequence of climate change, greater knowledge of ecophysiological and natural history traits are crucial to determine which environmental factors induce stress and drive the decline of threatened species. Liolaemus montanezi (Liolaemidae), a xeric-adapted lizard occurring only in a small geographic range in west-central Argentina, constitutes an excellent model for studies on the threats of climate change on such microendemic species. We describe field data on activity patterns, use of microhabitat, behavioral thermoregulation, and physiology to produce species distribution models (SDMs) based on climate and ecophysiological data. Liolaemus montanezi inhabits a thermally harsh environment which remarkably impacts their activity and thermoregulation. The species shows a daily bimodal pattern of activity and mostly occupies shaded microenvironments. Although the individuals thermoregulate at body temperatures below their thermal preference they avoid high-temperature microenvironments probably to avoid overheating. The population currently persists because of the important role of the habitat physiognomy and not because of niche tracking, seemingly prevented by major rivers that form boundaries of their geographic range. We found evidence of habitat opportunities in the current range and adjacent areas that will likely remain suitable to the year 2070, reinforcing the relevance of the river floodplain for the species’ avoidance of extinction.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Bian ◽  
Angela Pinilla ◽  
Tom Chandler ◽  
Richard Peters

AbstractHabitat-specific characteristics can affect signal transmission such that different habitats dictate the optimal signal. One way to examine how the environment influences signals is by comparing changes in signal effectiveness in different habitats. Examinations of signal effectiveness between different habitats has helped to explain signal divergence/convergence between populations and species using acoustic and colour signals. Although previous research has provided evidence for local adaptations and signal divergence in many species of lizards, comparative studies in movement-based signals are rare due to technical difficulties in quantifying movements in nature and ethical restrictions in translocating animals between habitats. We demonstrate herein that these issues can be addressed using 3D animations, and compared the relative performance of the displays of four Australian lizard species in the habitats of each species under varying environmental conditions. Our simulations show that habitats differentially affect signal performance, and an interaction between display and habitat structure. Interestingly, our results are consistent with the hypothesis that the signal adapted to the noisier environment does not show an advantage in signal effectiveness, but the noisy habitat was detrimental to the performance of all displays. Our study is one of the first studies for movement-based signals that directly compares signal performance in multiple habitats, and our approach has laid the foundation for future investigations in motion ecology that have been intractable to conventional research methods.


Author(s):  
Beatriz Tomé ◽  
D. James Harris ◽  
Ana Perera ◽  
Isabel Damas-Moreira

AbstractInvasive species can carry parasites to introduced locations, which may be key to understand the success or failure of species establishment and the invasive potential of introduced species. We compared the prevalence and infection levels of haemogregarine blood parasites between two sympatric congeneric species in Lisbon, Portugal: the invasive Italian wall lizard (Podarcis siculus) and the native green Iberian wall lizard (Podarcis virescens). The two species had significant differences in their infection levels: while P. virescens had high prevalence of infection (69.0%), only one individual of P. siculus was infected (3.7%), and while P. virescens exhibited an average intensity of 1.36%, the infected P. siculus individual had an infection rate of only 0.04%. Genetic analyses of 18S rRNA identified two different haemogregarine haplotypes in P. virescens. Due to the low levels of infection, we were not able to amplify parasite DNA from the infected P. siculus individual, although it was morphologically similar to those found in P. virescens. Since other studies also reported low levels of parasites in P. siculus, we hypothesize that this general lack of parasites could be one of the factors contributing to its competitive advantage over native lizard species and introduction success.


Check List ◽  
2013 ◽  
Vol 9 (1) ◽  
pp. 42 ◽  
Author(s):  
Ana Lúcia Costa Prudente ◽  
Fernanda Magalhães ◽  
Alessandro Menks ◽  
João Fabrício De Melo Sarmento

We present the first lizard species list for the municipality of Juruti, state of Pará, Brazil. The list was drawn up as a result of data obtained from specimens deposited in the Herpetological Collection of the Museu Paraense Emílio Goeldi and from inventories conducted in 2008-2011. Sampling methods included pitfall traps with drift fences and time constrained searches. We considered the data collected by other researchers, incidental encounters and records of dead individuals on the road. We recorded 33 species, 26 genera and ten families. Norops tandai was the most abundant species. Compared with the other regions of Amazonia, the region of Juruti presented a large number of lizards. However, further studies with an increase in the sampling effort, could prove this area to be richer in lizards than that observed so far.


2016 ◽  
Vol 94 (12) ◽  
pp. 829-836 ◽  
Author(s):  
B.J. Klüg-Baerwald ◽  
L.E. Gower ◽  
C.L. Lausen ◽  
R.M. Brigham

Winter activity of bats is common, yet poorly understood. Other studies suggest a relationship between winter activity and ambient temperature, particularly temperature at sunset. We recorded echolocation calls to determine correlates of hourly bat activity in Dinosaur Provincial Park, Alberta, Canada. We documented bat activity in temperatures as low as −10.4 °C. We observed big brown bats (Eptesicus fuscus (Palisot de Beauvois, 1796)) flying at colder temperatures than species of Myotis bats (genus Myotis Kaup, 1829). We show that temperature and wind are important predictors of winter activity by E. fuscus and Myotis, and that Myotis may also use changes in barometric pressure to cue activity. In the absence of foraging opportunity, we suggest these environmental factors relate to heat loss and thus the energetic cost of flight. To understand the energetic consequences of bat flight in cold temperatures, we estimated energy expenditure during winter flights of E. fuscus and little brown myotis (Myotis lucifugus (Le Conte, 1831)) using species-specific parameters. We estimated that winter flight uses considerable fat stores and that flight thermogenesis could mitigate energetic costs by 20% or more. We also show that temperature-dependent interspecific differences in winter activity likely stem from differences between species in heat loss and potential for activity–thermoregulatory heat substitution.


1991 ◽  
Vol 23 (1) ◽  
pp. 61 ◽  
Author(s):  
B. Scott Gilbert ◽  
Stan Boutin
Keyword(s):  

2016 ◽  
Vol 124 ◽  
pp. 225-232 ◽  
Author(s):  
Ian W. Murray ◽  
Andrea Fuller ◽  
Hilary M. Lease ◽  
Duncan Mitchell ◽  
Robyn S. Hetem

2010 ◽  
Vol 77 (2) ◽  
pp. 232-235 ◽  
Author(s):  
Charles R. Bursey ◽  
Daniel R. Brooks

Sign in / Sign up

Export Citation Format

Share Document