scholarly journals Combined Application of Microbial Inoculation and Biochar to Mitigate Drought Stress in Wheat

Author(s):  
Fatih ÇIĞ ◽  
Murat ERMAN ◽  
Mustafa CERİTOĞLU
2016 ◽  
Vol 40 (9) ◽  
pp. 1250-1260 ◽  
Author(s):  
Shadana Kanwal ◽  
Noshin Ilyas ◽  
Nazima Batool ◽  
Muhammad Arshad

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Dhananjaya P. Singh ◽  
Vivek Singh ◽  
Vijai K. Gupta ◽  
Renu Shukla ◽  
Ratna Prabha ◽  
...  

2021 ◽  
Author(s):  
DEVENDRA SINGH ◽  
Shobit Thapa ◽  
Jagriti Yadav ◽  
Dikchha SINGH ◽  
Hillol Chakdar ◽  
...  

Abstract Drought stress adversely influences the crop plants. Herein, present research was designed to elucidate the role of plant growth promoting microbes for amelioration of water stress in wheat. A pot experiment was conducted for screening the microorganisms on the basis of plant growth, chlorophyll and proline content under water stress. Bacillus sp. BT3 and Klebsiella sp. HA9 were found more promising strains that positively influenced the plant growth, chlorophyll and proline status of seedlings under water stress condition. Further, Bacillus sp. BT-3 and Klebsiella sp. HA9 along with check strain (BioNPK) were used for elucidating their detailed effect on morphological, biochemical, physiological and molecular traits to mitigate drought stress in wheat. Microbial inoculation significantly enhanced plant growth, biomass, relative water content, chlorophyll content and root morphological parameters over the uninoculated water stressed (30% FC) control. Likewise, sugar content, protein content and antioxidant enzymes were also significantly enhanced due to microbial inoculation under water stress (30% FC). Microbial inoculation significantly decreased proline, glycine betaine, lipid peroxidation, peroxide and superoxide radicals in wheat over the uninoculated water stressed (30%FC) control. Quantitative real-time (qRT)- PCR analysis revealed that Bacillus sp. BT-3, Klebsiella sp. HA9 and BioNPK inoculation significantly upregulated stress responsive genes (DHN, DREB, L15 and TaABA-8OH) over the uninoculated water stressed (30% F.C.) control. The study reports the potential of Bacillus sp. BT3 and Klebsiella sp. HA9 along with BioNPK in water stress alleviation in wheat which could be recommended as effective biofertilizers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0256984
Author(s):  
Abdul Sattar ◽  
Xiukang Wang ◽  
Tahira Abbas ◽  
Ahmad Sher ◽  
Muhammad Ijaz ◽  
...  

Wheat is an important global staple food crop; however, its productivity is severely hampered by changing climate. Erratic rain patterns cause terminal drought stress, which affect reproductive development and crop yield. This study investigates the potential and zinc (Zn) and silicon (Si) to ameliorate terminal drought stress in wheat and associated mechanisms. Two different drought stress levels, i.e., control [80% water holding capacity (WHC) was maintained] and terminal drought stress (40% WHC maintained from BBCH growth stage 49 to 83) combined with five foliar-applied Zn-Si combinations (i.e., control, water spray, 4 mM Zn, 40 mM Si, 4 mM Zn + 40 mM Si applied 7 days after the initiation of drought stress). Results revealed that application of Zn and Si improved chlorophyll and relative water contents under well-watered conditions and terminal drought stress. Foliar application of Si and Zn had significant effect on antioxidant defense mechanism, proline and soluble protein, which showed that application of Si and Zn ameliorated the effects of terminal drought stress mainly by regulating antioxidant defense mechanism, and production of proline and soluble proteins. Combined application of Zn and Si resulted in the highest improvement in growth and antioxidant defense. The application of Zn and Si improved yield and related traits, both under well-watered conditions and terminal drought stress. The highest yield and related traits were recorded for combined application of Zn and Si. For grain and biological yield differences among sole and combined Zn-Si application were statistically non-significant (p>0.05). In conclusion, combined application of Zn-Si ameliorated the adverse effects of terminal drought stress by improving yield through regulating antioxidant mechanism and production of proline and soluble proteins. Results provide valuable insights for further cross talk between Zn-Si regulatory pathways to enhance grain biofortification.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1078
Author(s):  
Faisal Zulfiqar ◽  
Jianjun Chen ◽  
Patrick M. Finnegan ◽  
Adnan Younis ◽  
Muhammad Nafees ◽  
...  

Trehalose (Tre) and salicylic acid (SA) are increasingly used to mitigate drought stress in crop plants. In this study, a pot experiment was performed to study the influence of Tre and SA applied individually or in combination on the growth, photosynthesis, and antioxidant responses of sweet basil (Ocimum basilicum L.) exposed to drought stress. Basil plants were watered to 60% or 100% field capacity with or without treatment with 30 mM Tre and/or 1 mM SA. Drought negatively affected growth, physiological parameters, and antioxidant responses. Application of Tre and/or SA resulted in growth recovery, increased photosynthesis, and reduced oxidative stress. Application of Tre mitigated the detrimental effects of drought more than SA. Furthermore, co-application of Tre and SA largely eliminated the negative impact of drought by reducing oxidative stress through increased activities of antioxidant enzymes superoxide dismutase, peroxidase, and catalase, as well as the accumulation of the protective osmolytes proline and glycine betaine. Combined Tre and SA application improved water use efficiency and reduced the amount of malondialdehyde in drought-stressed plants. Our results suggested that combined application of Tre and SA may trigger defense mechanisms of sweet basil to better mitigate oxidative stress induced by drought stress, thereby improving plant growth.


2020 ◽  
Vol 48 (2) ◽  
pp. 989-1004
Author(s):  
Mojtaba AFSHARI ◽  
Ahmad NADERI ◽  
Mani MOJADAM ◽  
Shahram LACK ◽  
Mojtaba ALAVIFAZEL

Microelements are inorganic compounds involved in the synthesis of enzymes and biologically active substances. To evaluate the physiological responses of maize to ZnSO4 and FeSO4 under drought stress, a field experiment was conducted on maize plants grown under different soil moistures and treated with foliar ZnSO4 and FeSO4 applications. Drought stress especially at early seed growth stage significantly reduced grain yield and Fv/Fm ratio; however, the activity of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) and glutathione reductase (GR) was enhanced under drought stress. Foliar applied ZnSO4 and FeSO4 boosted the grain yield under non irrigation at vegetative growth stage and at early seed growth stage, respectively.  Between grain yield and MDA concentration (r=­ -0.73), superoxide dismutase (r= -0.57), peroxidase (r= -0.49), H2O2 (r= -0.67) and catalase enzyme (r= -0.42) significant and negative correlation were observed. Combined application of ZnSO4 and FeSO4 resulted in alleviation of maize plant drought stress by Zn and Fe-mediated improvement in photosynthetic attributes. In addition, the foliar application of ZnSO4 and FeSO4 regulated physiological processes in maize plants and alleviated the adverse effects of water stress. According to the results, ZnSO4 and FeSO4 could be used for improving maize growth under drought stress.


2021 ◽  
Vol 13 (17) ◽  
pp. 9603
Author(s):  
Muhammad Zafar-ul-Hye ◽  
Muhammad Naeem Akbar ◽  
Yasir Iftikhar ◽  
Mazhar Abbas ◽  
Atiqa Zahid ◽  
...  

Lentil (Lens culinaris Medik) is an important component of the human diet due to its high mineral and protein contents. Abiotic stresses, i.e., drought, decreases plant growth and yield. Drought causes the synthesis of reactive oxygen species, which decrease a plant’s starch contents and growth. However, ACC-deaminase (1-aminocyclopropane-1-carboxylate deaminase) producing rhizobacteria can alleviate drought stress by decreasing ethylene levels. On the other hand, caffeic acid (CA) can also positively affect cell expansion and turgor pressure maintenance under drought stress. Therefore, the current study was planned with an aim to assess the effect of CA (0, 20, 50 and 100 ppm) and ACC-deaminase rhizobacteria (Lysinibacillus fusiform, Bacillus amyloliquefaciens) on lentils under drought stress. The combined application of CA and ACC-deaminase containing rhizobacteria significantly improved plant height (55%), number of pods per plant (51%), 1000-grain weight (45%), nitrogen concentration (56%), phosphorus concentration (19%), potassium concentration (21%), chlorophyll (54%), relative water contents RWC (60%) and protein contents (55%). A significant decrease in electrolyte leakage (30%), proline contents (44%), and hydrogen peroxide contents (54%), along with an improvement in cell membrane stability (34% over control) validated the combined use of CA and rhizobacteria. In conclusion, co-application of CA (20 ppm) and ACC-deaminase producing rhizobacteria can significantly improve plant growth and yield for farmers under drought stress. More investigations are suggested at the field level to select the best rhizobacteria and CA level for lentils under drought.


Sign in / Sign up

Export Citation Format

Share Document