scholarly journals THE EFFECT OF PLANT GROWTH PROMOTING RHIZOBACTERIA IN REDUCING NITROGEN AND PHOSPHORUS FERTILIZERS APPLICATION IN SUGARCANE

2021 ◽  
Vol 21 (No 1) ◽  
Author(s):  
Aghajan bahadori ◽  
Mohmmad Hossein GHarineh ◽  
Abdolmahdi Bakhshandeh ◽  
Naeimeh Enayatizamir ◽  
Alireza Shafeinia

This study was performed in order to investigate the effect of Plant growth-promoting rhizobacteria in reducing nitrogen and phosphorus Fertilizers Application in Sugarcane. The field experiment of this study was in the form of Split–block design with subplots in stips with four replications and three factors, including bacterial factor at four levels (control, Enterobacter cloaca, Pseudomonas putida and a combination of two types of bacteria), nitrogen factor at three levels (50, 75 and 100% recommended nitrogen for sugarcane (and phosphorus factor at three levels (50, 75 and 100% recommended phosphorus for sugarcane), was carried out in 2016-2017crop year in DC7-10 research farm of Dehkhoda sugarcane agro-industryin Ahvaz, in the southwest of Iran, on CP73-21 sugarcane variety. According to the analysis of variance tables, simple and interaction effects of the tested treatments, in the case of quantitative traits, including stalk yield, height, diameter, stalk density, percentage of nitrogen and phosphorus of leaves, chlorophyll content, LAI and HI in sugarcane were significant at the level of 1% probability. Comparison of means showed that the application of simultaneous application of growth-promoting bacteria along with the application of 75% recommended nitrogen and phosphorus for sugarcane, compared with the control treatment (application of 100% recommended nitrogen and phosphorus for sugarcane, without the use of bacteria), Was able to succeed in these traits 96.9%, 98.1%, 95.7%, 96.3%, 100.2% ,101.9%, 91.2% and 94.8%, respectively and Provide 21/9, 23/1, 20/7, 21/3, 25, 25, 16.2 and 19.8% of the nutrients of nitrogen and phosphorus for sugarcane, respectively, and is saved the same amount of nitrogen and phosphorus consumption for sugarcane. Also, regarding the sugarcane yield, the simultaneous application treatment of the tested bacteria along with the application of 100% recommended phosphorus and nitrogen for sugarcane, Compared to the control treatment

2017 ◽  
Vol 9 (3) ◽  
pp. 1422-1428 ◽  
Author(s):  
Zorawar Singh ◽  
Guriqbal Singh ◽  
Navneet Aggarwal

The field experiment was conducted during 2015-16 to study the effect of biofetilizer inoculation [control, Mesorhizobium only, Mesorhizobium + RB-1 (Pseudomonas argentinensis) and Mesorhizobium + RB-2 (Bacillus aryabhattai)] and four levels of phosphorus (0, 15, 20 and 25 kg P2O5 ha-1) on chickpea growth. RB-1 and RB-2 were the plant growth promoting rhizobacteria (PGPR). Biofertilizers could play a crucial role in reducing the dependence on chemical fertilizers by fixing the atmospheric nitrogen for crop and/or by increasing the availability of phosphorus and phytohormones to the crop. The 16 treatment combinations were laid out in Factorial Randomized Complete Block Design and replicated three times. In biofertilizer treatments, Mesorhizobium + RB-1 proved superior over control and sole inoculation of Mesorhizobium and at par with Mesorhizobium + RB-2 with respect to plant height (cm), number of branches (plant-1), shoot and root dry matter (kg ha-1) which were recorded at 30, 60 90, 120 days after sowing (DAS) and at harvest. Application of 25 kg P2O5 ha-1 gave the highest values of all the growth at-tributes viz. plant height (60 cm), number of primary (5.3) and secondary (27.2) branches per plant, shoot dry matter (4000 kg ha-1) and root dry matter (354 kg ha-1) which were significantly higher than that of 0 and 15 kg P2O5 ha-1 and at par with 20 kg P2O5 ha-1. Similar results were observed in case of crop growth rate (CGR) whereas relative growth rate (RGR) was not influenced significantly by various biofertilizer and phosphorus treatments. The dual inoc-ulation with PGPR strains along with phosphorus application have a supplementary effect on the growth of chickpea.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 894
Author(s):  
Emad M. Hafez ◽  
Hany S. Osman ◽  
Usama A. Abd El-Razek ◽  
Mohssen Elbagory ◽  
Alaa El-Dein Omara ◽  
...  

The continuity of traditional planting systems in the last few decades has encountered its most significant challenge in the harsh changes in the global climate, leading to frustration in the plant growth and productivity, especially in the arid and semi-arid regions cultivated with moderate or sensitive crops to abiotic stresses. Faba bean, like most legume crops, is considered a moderately sensitive crop to saline soil and/or saline water. In this connection, a field experiment was conducted during the successive winter seasons 2018/2019 and 2019/2020 in a salt-affected soil to explore the combined effects of plant growth-promoting rhizobacteria (PGPR) and potassium (K) silicate on maintaining the soil quality, performance, and productivity of faba bean plants irrigated with either fresh water or saline water. Our findings indicated that the coupled use of PGPR and K silicate under the saline water irrigation treatment had the capability to reduce the levels of exchangeable sodium percentage (ESP) in the soil and to promote the activity of some soil enzymes (urease and dehydrogenase), which recorded nearly non-significant differences compared with fresh water (control) treatment, leading to reinstating the soil quality. Consequently, under salinity stress, the combined application motivated the faba bean vegetative growth, e.g., root length and nodulation, which reinstated the K+/Na+ ions homeostasis, leading to the lessening or equalizing of the activity level of enzymatic antioxidants (CAT, POD, and SOD) compared with the controls of both saline water and fresh water treatments, respectively. Although the irrigation with saline water significantly increased the osmolytes concentration (free amino acids and proline) in faba bean plants compared with fresh water treatment, application of PGPR or K-silicate notably reduced the osmolyte levels below the control treatment, either under stress or non-stress conditions. On the contrary, the concentrations of soluble assimilates (total soluble proteins and total soluble sugars) recorded pronounced increases under tested treatments, which enriched the plant growth, the nutrients (N, P, and K) uptake and translocation to the sink organs, which lastly improved the yield attributes (number of pods plant−1, number of seeds pod−1, 100-seed weight). It was concluded that the combined application of PGPR and K-silicate is considered a profitable strategy that is able to alleviate the harmful impact of salt stress alongside increasing plant growth and productivity.


2018 ◽  
Vol 109 (4) ◽  
pp. 479-489 ◽  
Author(s):  
R. Sattari Nasab ◽  
M. Pahlavan Yali ◽  
M. Bozorg-Amirkalaee

AbstractThe cabbage aphid, Brevicoryne brassicae L. (Hem: Aphididae), is an important pest of canola that can considerably limit profitable crop production either through direct feeding or via transmission of plant pathogenic viruses. One of the most effective approaches of pest control is the use of biostimulants. In this study, the effects of humic acid, plant growth-promoting rhizobacteria (PGPR), and integrated application of both compounds were investigated on life table parameters of B. brassicae, and the tolerance of canola to this pest. B. brassicae reared on plants treated with these compounds had the lower longevity, fecundity, and reproductive period compared with control treatment. The intrinsic rate of natural increase (r) and finite rate of increase (λ) were lowest on PGPR treatment (0.181 ± 0.004 day−1 and 1.198 ± 0.004 day−1, respectively) and highest on control (0.202 ± 0.005 day−1 and 1.224 ± 0.006 day−1, respectively). The net reproductive rate (R0) under treatments of humic acid, PGPR and humic acid + PGPR was lower than control. There was no significant difference in generation time (T) of B. brassicae among the tested treatments. In the tolerance test, plants treated with PGPR alone or in integrated with humic acid had the highest tolerance against B. brassicae. The highest values of total phenol, flavonoids, and glucosinolates were observed in treatments of PGPR and humic acid + PGPR. Basing on the antibiosis and tolerance analyses in this study, we concluded that canola plants treated with PGPR are more resistant to B. brassicae. These findings could be useful for integrated pest management of B. brassicae in canola fields.


2021 ◽  
Vol 10 (1) ◽  
pp. 1-5
Author(s):  
Muhammad Yusril Hardiansyah ◽  
Yunus Musa ◽  
Abdul Mollah Jaya

The low productivity of cocoa plantations in Indonesia is partly due to the low quality of seeds, which refers to the impeded growth of cultivated cocoa nurseries. Seed is the initial growth of plants so the importance of giving special treatment to seeds will refer to better seed growth. Provision of Plant Growth Promoting Rhizobacteria (PGPR) microbes can produce indoleacetic acid (IAA) in plants to improve the quality of plant growth. This study aims to determine the effectiveness of the provision of Plant Growth Promoting Rhizobacteria bamboo rhizosphere against cocoa seed germination. The study was carried out in the farmer group garden, Gantarangkeke District, Bantaeng. This study was arranged in the form of a two-factor factorial design (F2F) in a randomized block design (RBD). The use of cocoa seed type as the first factor consisted of GTB (Gantarangkeke Bantaeng) local cocoa seed and MCC 01 cocoa seed and seed immersion treatment at PGPR rhizosphere bamboo concentration as the second factor consisting of 0% (control) concentration, 5%, 10 % and 15%. The results obtained indicate that administration of seeds with bamboo rhizosphere PGPR affects the germination (100.00%), the speed of seed growth (7.14%/etmal), as well as on abnormal seeds (10.00%). So that the provision of bamboo rhizosphere PGPR on cocoa seeds has an effective influence on seed germination and cocoa seedling development.


2021 ◽  
Vol 12 ◽  
Author(s):  
Panagiotis Kalozoumis ◽  
Dimitrios Savvas ◽  
Konstantinos Aliferis ◽  
Georgia Ntatsi ◽  
George Marakis ◽  
...  

In the current study, inoculation with plant growth-promoting rhizobacteria (PGPR) and grafting were tested as possible cultural practices that may enhance resilience of tomato to stress induced by combined water and nutrient shortage. The roots of tomato grown on perlite were either inoculated or not with PGPR, applying four different treatments. These were PGPR-T1, a mix of two Enterobacter sp. strains (C1.2 and C1.5); PGPR-T2, Paenibacillus sp. strain DN1.2; PGPR-T3, Enterobacter mori strain C3.1; and PGPR-T4, Lelliottia sp. strain D2.4. PGPR-treated plants were either self-grafted or grafted onto Solanum lycopersicum cv. M82 and received either full or 50% of their standard water, nitrogen, and phosphorus needs. The vegetative biomass of plants subjected to PGPR-T1 was not reduced when plants were cultivated under combined stress, while it was reduced by stress to the rest of the PGPR treatments. However, PGPR-T3 increased considerably plant biomass of non-stressed tomato plants than did all other treatments. PGPR application had no impact on fruit biomass, while grafting onto ’M82’ increased fruit production than did self-grafting. Metabolomics analysis in tomato leaves revealed that combined stress affects several metabolites, most of them already described as stress-related, including trehalose, myo-inositol, and monopalmitin. PGPR inoculation with E. mori strain C3.1 affected metabolites, which are important for plant/microbe symbiosis (myo-inositol and monopalmitin). The rootstock M82 did not affect many metabolites in plant leaves, but it clearly decreased the levels of malate and D-fructose and imposed an accumulation of oleic acid. In conclusion, PGPR are capable of increasing tomato tolerance to combined stress. However, further research is required to evaluate more strains and refine protocols for their application. Metabolites that were discovered as biomarkers could be used to accelerate the screening process for traits such as stress tolerance to abiotic and/or abiotic stresses. Finally, ‘M82’ is a suitable rootstock for tomato, as it is capable of increasing fruit biomass production.


2019 ◽  
Vol 7 (2) ◽  
pp. 64
Author(s):  
Syafrullah Salman

This research aims to find out effect of combination dosage of PGPR (Plant Growth Promoting Rhizobacteria) and phonska fertilizer toward the growth and the yield of soybean. This experiment was carried out in the field using a combination randomized block design (RBD) with five repeating.The treatments gave were 100% PGPR fertilizer (8 grams / liter) (A), 100% PGPR fertilizer (8 grams / liter) + 50% phonska fertilizer (0.78 grams) (B), 50% PGPR fertilizer (4 grams / liter) + 100% phonska fertilizer (1.56 gram) (C), 50% PGPR fertilizer (4 gram / liter) + 50% phonska fertilizer (0.78 gram) (D) and 100% phonska fertilizer (1, 56 grams) (E).The results showed that the treatment of 50% PGPR fertilizer (4 grams / liter) + phonska fertilizer 100% (1.56 grams) (C) gave a significant effect on the variable root length and leaf area index (LAI).The treatment of 100% phonska fertilizer (1.56 grams) (E) gave a significant effect on the variable seed weight per plot.


Akta Agrosia ◽  
2020 ◽  
Vol 23 (1) ◽  
pp. 33-37
Author(s):  
Fera Ariska ◽  
Marlin Marlin ◽  
Widodo Widodo

Bawang dayak is the important medicinal plant that need to be developed in cultivation techniques and production. The use of Plant Growth Promoting Rhizobacteria (PGPR) recently known to be effective to increase plant growth and yield. The research aimed to determine the optimal concentration and immersion time of PGPR on the growth and yield of bawang dayak. The experiment was arrange in complete randomized block design (RCBD) consisting of two factors. The first factor is the concentration of PGPR with 4 levels namely K0 = 0 g L-1, K1 = 5 g L-1, K2 = 10 g L-1 and K3 = 15 g L-1.  The second factor is immersion time of seed, namely P1 = 10 minutes, P2 = 20 minutes, P3 = 30 minutes and P4 = 40 minutes.  The results showed that there was an interaction between concentration and immersion time of PGPR giving effect to the number of leaves and the number of tillers. The immersion time of PGPR for 10 minutes with a concentration of 15 g L-1produced the highest number of leaves (58 leaves) and produced the highest number of tillers (27.67 tillers).  The treatment of PGPR concentration or immersion time of PGPR singly did not affect all observed variables of growth and yield of bawang dayak.


2007 ◽  
Vol 47 (8) ◽  
pp. 1008 ◽  
Author(s):  
Babur Saeed Mirza ◽  
M. Sajjad Mirza ◽  
Asghari Bano ◽  
Kauser A. Malik

The aim of the present study was to isolate plant-beneficial bacteria (both Rhizobium and plant growth promoting rhizobacteria) from roots and nodules of chickpea (Cicer arietinum L.) and to study the effect of coinoculations on growth of two cultivars of chickpea. Four Rhizobium strains were obtained from roots and four from the nodules of field-grown chickpea cv. Parbat and identified on the basis of morphological characteristics, and biochemical and infectivity tests on the host seedlings. Only one type of nitrogen and carbon source utilisation pattern and DNA banding pattern of random amplified polymorphic DNA was observed in all isolates (Rn1, Rn2, Rn3, Rn4) from nodules, while two types of such patterns were detected among the isolates from roots. The isolate Rr1 from roots also exhibited a pattern identical to those of the isolates from nodules, whereas the remaining three isolates (Rr2, Rr3 and Rr4) from roots showed a different pattern. Two strains of plant growth-promoting rhizobacteria belonging to genus Enterobacter were also isolated from chickpea roots. All the Rhizobium strains and Enterobacter strains produced the plant growth hormones indole acetic acid and gibberellic acid in the growth medium. Effects of the bacterial isolates as single- or double-strain inocula were studied on two chickpea cultivars (NIFA 88 and Parbat) grown in sterilised soil. In cultivar NIFA 88, coinoculation of Rhizobium strain Rn1 with Enterobacter strain B resulted in maximum increase in plant biomass and nodulation, as compared with the control treatment (non-inoculated as well as inoculated with Rhizobium strain Rn1 only), whereas the combination of Rhizobium Rn1 with Enterobacter A was more efficient in growth promotion of chickpea cv. Parbat. In non-sterilised soil, the same combinations of the Rhizobium strain Rn1 with Enterobacter strains A and B were found to be the most effective inoculants for cvv. Parbat and NIFA 88, respectively. However, some negative effects on plant growth were also noted in cv. Parbat coinoculated with Rhizobium strain Rr2 and Enterobacter strain B.


2021 ◽  
Vol 5 (1) ◽  
pp. 44-48
Author(s):  
Fajar Setyawan ◽  
M. Machfud Aldi ◽  
Abu Talkah

Nutrient availability is very significant in supporting plant growth. The low content of organic fertilizers and existing minerals appear as the primary limiting factors for soybean cultivation on acid soils. Therefore, the purpose of this research is to determine the effect of organic fertilizers and Plant Growth Promoting Rhizobacteria (PGPR) on plant growth and yield. A completely randomized block design (CRBD) factorial with three replications was employed, where the first variable involved the chicken and cow composts as well as Tithonia green fertilizer. Meanwhile, the second referred to PGPR at 0, 5, 10 and 15 ml.L<sup>-1</sup>. The results showed no interaction between the application of organic fertilizers and PGPR on soybean growth as well as the yield. Furthermore, the cow manure treatment of 10 t.ha<sup>-1</sup> reportedly increased the total dry weight and sample growth rate by 0.44 and 0.86%, respectively, compared to the chicken manure at similar composition. Also, 10 ml.L<sup>-1</sup> of PGPR was known to improve the pod quantity per plant and harvest index by 0.58 and 2.66% harvest index, correspondingly, than without PGPR.


2021 ◽  
Vol 226 ◽  
pp. 00031
Author(s):  
Muhammad Muhammad ◽  
Umi Isnatin ◽  
Peeyush Soni ◽  
Praptiningsih Gamawati Adinurani

This study aimed to find an effective combination of mycorrhiza, PGPR (Plant Growth Promoting Rhizobacteria), and inorganic fertilizers. Whereas the specific purpose was observed in effective mycorrhiza to increased chlorophyll content. This study used a completely randomized design (CRD) with three factors: the 1st factor is mycorrhiza application, the 2nd factor is PGPR and the 3rd factor is the application of nitrogen and phosphorus fertilizers. The data were analyzed with Analysis of Variance to determine the effect of the treatment being tried. Continued with the Least Significance Different test at a 95 % confidence level. The results indicated that the most effective application in increasing total chlorophyll content was (i) the ‟Commercial Mycorrhiza” without being combined with PGPR and fertilizer (TP.TR.MP:80 g mL–1). (ii) ‟Brawijaya Mycorrhiza” is combined with PGPR without fertilizer (TP.R.MB: 83 g mL–1). (iii) ‟Unida Mycorrhiza” without combined with PGPR and without fertilizer (TP.TR.MU: 80 g mL–1).


Sign in / Sign up

Export Citation Format

Share Document