scholarly journals The Impact of Inoculation with Arbuscular mycorrhizal Fungi on Tomato Tolerance to Salt Stress and Nutrients Uptake in Sandy Soil

2020 ◽  
Vol 11 (3) ◽  
pp. 63-70
Author(s):  
Noha Abdelhameid ◽  
Mona El-Shazly
Author(s):  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Abdilaziz A. Alqarawi ◽  
Stephan Wirth ◽  
Dilfuza Egamberdieva

The present study was carried with the aim to demonstrate and examine the impact of arbuscular mycorrhizal fungi (AMF) on the growth, anti-oxidants metabolism and some key physio-biochemical attributes including the osmotic constituents in <italic>Lupinus termis</italic> exposed to salt stress. Salt stress (250 mM NaCl) reduced growth, AMF colonisation, relative water content and chlorophyll pigment content. However, AMF ameliorated the negative effect of salinity on these growth parameters. Salt stress increased the activities of key antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD). Inoculation of AMF enhanced the activities of these enzymes and caused an increase in the accumulation of osmotic components resulting in the maintainence of tissue water content. Proline, glycine betaine and sugars increased with salinity stress and AMF inoculation. Plants subjected to salt stress showed considerable variations in the endogenous levels of growth hormones. Reduced lipid peroxidation and increased membrane stability in AMF inoculated plants and enhanced activity of anti-oxidants enzymes confers the role of AMF in assuaging the salt stress induced deleterious effects.


2021 ◽  
Vol 11 ◽  
Author(s):  
Nguyen Hong Duc ◽  
Au Trung Vo ◽  
Imane Haddidi ◽  
Hussein Daood ◽  
Katalin Posta

Eclipta prostrata (L.) is an important and well-known medicinal plant due to its valuable bioactive compounds. Microorganisms, including arbuscular mycorrhizal fungi (AMF), and salinity could directly impact plant metabolome, thus influencing their secondary metabolites and the efficacy of herbal medicine. In this study, the role of different single AMF species (Funneliformis mosseae, Septoglomus deserticola, Acaulospora lacunosa) and a mixture of six AMF species in plant growth and physio-biochemical characteristics of E. prostrata under non-saline conditions was investigated. Next, the most suitable AM treatment was chosen to examine the impact of AMF on physio-biochemical features and polyphenol profiles of E. prostrata under saline conditions (100 and 200 mM NaCl). The findings indicated that AMF mixture application resulted in more effective promotion on the aboveground part of non-saline plants than single AMF species. AM mixture application improved growth and salt tolerance of E. prostrata through increasing the activity of catalase, peroxidase (at 4 weeks), proline, and total phenolic content (at 8 weeks). Such benefits were not observed under high salinity, except for a higher total phenolic concentration in mycorrhizal plants at 8 weeks. Through high-performance liquid chromatography, 14 individual phenolic compounds were analyzed, with wedelolactone and/or 4,5-dicaffeoylquinic acid abundant in all treatments. Salinity and mycorrhizal inoculation sharply altered the polyphenol profiles of E. prostrata. Moderate salinity boosted phenolic compound production in non-AM plants at 4 weeks, while at 8 weeks, the decline in the content of phenolic compounds occurred in uncolonized plants subjected to both saline conditions. Mycorrhization augmented polyphenol concentration and yield under non-saline and saline conditions, depending on the growth stages and salt stress severity. Plant age influenced polyphenol profiles with usually a higher content of phenolic compounds in older plants and changed the production of individual polyphenols of both non-AM and AM plants under non-stress and salt stress conditions. A better understanding of factors (involving mycorrhiza and salinity) affecting the phenolic compounds of E. prostrata facilitates the optimization of individual polyphenol production in this medicinal plant.


2015 ◽  
Vol 96 ◽  
pp. 172-182 ◽  
Author(s):  
Natielo Almeida Santana ◽  
Paulo Avelar Ademar Ferreira ◽  
Hilda Hildebrand Soriani ◽  
Gustavo Brunetto ◽  
Fernando Teixeira Nicoloso ◽  
...  

2018 ◽  
Vol 25 (6) ◽  
pp. 1102-1114 ◽  
Author(s):  
Abeer Hashem ◽  
Abdulaziz A. Alqarawi ◽  
Ramalingam Radhakrishnan ◽  
Al-Bandari Fahad Al-Arjani ◽  
Horiah Abdulaziz Aldehaish ◽  
...  

2019 ◽  
Vol 113 (2) ◽  
pp. 321
Author(s):  
Mazen IBRAHIM

The impact of indigenous arbuscular mycorrhizal fungi (AMF) on agronomic characteristics of sunflower (<em>Helianthus annuus</em> L.) was evaluated in a pot experiment. The indigenous AMF, including <em>Glomus intraradices, Glomus mosseae</em>, and <em>Glomus viscosum</em>, were isolated from an agricultural field in which cotton and sunflower plants were grown. The most abundant species (<em>G. viscosum</em>) was multiplied in a monospecific culture. Sunflower plants were inoculated with the mixture of three selected AMF species or solely with <em>G. viscosum</em>. The number of leaves, shoot length, head diameter, above ground biomass, and seeds mass were significantly higher in the plant inoculated with AMF mixture followed by individual inoculation with <em>G. viscosum</em> followed by the control. AMF mixture outperformed the <em>G. viscosumby</em> increasing mycorrhizal dependency and mycorrhizal inoculation effect of sunflower. The results indicate that AMF mixture could be considered as a good inoculum for improving growth and yield of sunflower in sustainable agriculture.


2020 ◽  
Vol 11 ◽  
Author(s):  
Rujira Tisarum ◽  
Cattarin Theerawitaya ◽  
Thapanee Samphumphuang ◽  
Kanyamin Polispitak ◽  
Panarat Thongpoem ◽  
...  

2020 ◽  
Vol 178 ◽  
pp. 104159 ◽  
Author(s):  
Tengteng Gao ◽  
Xiaomin Liu ◽  
Lei Shan ◽  
Qian Wu ◽  
Yuan Liu ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Abeer Hashem ◽  
E. F. Abd_Allah ◽  
A. A. Alqarawi ◽  
A. A. Al-Huqail ◽  
M. A. Shah

The role of soil microbiota in plant stress management, though speculated a lot, is still far from being completely understood. We conducted a greenhouse experiment to examine synergistic impact of plant growth promoting rhizobacterium,Bacillus subtilis(BERA 71), and arbuscular mycorrhizal fungi (AMF) (Claroideoglomus etunicatum;Rhizophagus intraradices; andFunneliformis mosseae) to induce acquired systemic resistance in Talh tree (Acacia gerrardiiBenth.) against adverse impact of salt stress. Compared to the control, the BERA 71 treatment significantly enhanced root colonization intensity by AMF, in both presence and absence of salt. We also found positive synergistic interaction betweenB.subtilisand AMFvis-a-visimprovement in the nutritional value in terms of increase in total lipids, phenols, and fiber content. The AMF and BERA 71 inoculated plants showed increased content of osmoprotectants such as glycine, betaine, and proline, though lipid peroxidation was reduced probably as a mechanism of salt tolerance. Furthermore, the application of bioinoculants to Talh tree turned out to be potentially beneficial in ameliorating the deleterious impact of salinity on plant metabolism, probably by modulating the osmoregulatory system (glycine betaine, proline, and phenols) and antioxidant enzymes system (SOD, CAT, POD, GR, APX, DHAR, MDAHR, and GSNOR).


Sign in / Sign up

Export Citation Format

Share Document