scholarly journals EXPERIMENTAL AND NUMERICAL STUDY OF THE EFFECT OF MIXING CHAMBER LENGTH AND AREA RATIO ON THE PERFORMANCE OF A SUBSONIC AIR-AIR EJECTOR

2009 ◽  
Vol 37 (1) ◽  
pp. 85-99
Author(s):  
Tarek A. Meakhail
2006 ◽  
Vol 128 (6) ◽  
pp. 1164-1171 ◽  
Author(s):  
Sehoon Kim ◽  
Sejin Kwon

The effects of four geometric parameters of an annular injection supersonic ejector, namely, the primary nozzle exit-to-throat area ratio, the contraction angle of the mixing chamber, the cross-sectional area and L/D ratio of the second-throat on the performance parameters including the secondary flow pressure, the starting pressure and unstarting pressure were investigated experimentally. The starting pressure exhibits linearly proportional dependence on the throat area ratio when the mixing chamber length is less than a certain critical value. For a longer mixing chamber, the starting pressure is proportional to the mixing chamber length while the unstarting pressure depends on the throat area ratio only. The geometric parameters of the second-throat do not affect the static pressure of the secondary flow. This implies that the secondary flow is aerodynamically choked in the mixing chamber and the static pressure of the secondary flow is determined by the choking condition since the mixing chamber of the annular injection ejector is relatively long. Based on the findings by the experiment, a simplified analytical model was proposed to predict the secondary flow pressure. The predicted secondary flow pressure agrees reasonably well with the measurement for a small contraction angle of the mixing chamber.


1992 ◽  
Vol 72 (4) ◽  
pp. 1348-1354 ◽  
Author(s):  
D. Yager ◽  
H. Feldman ◽  
Y. C. Fung

The stretch of the perimeters of alveolar ducts was measured at the surface of saline-filled specimens of human and dog lung parenchyma that were stretched biaxially. The microscopic stretch of these ducts was measured at several levels of isotropic biaxial macroscopic stretch of the parenchyma with stretch ratio (lambda x = lambda y) in the range of 1.20–1.40, which roughly corresponds to tidal breathing in humans and dogs. Alveolar walls were found to be load-carrying elements in the saline-filled lung, as seen by their straightness at all levels of stretch. Quantitatively, let l, A, L, and S denote, respectively, the duct perimeter length and area and the parenchymal target perimeter and area in the deformed state and lo, Ao, Lo, and So the corresponding variables in the undeformed state. The microscopic stretch ratio of the ducts (l/lo) was found to be approximately 4% larger than the macroscopic stretch ratio (L/Lo) in human lung and approximately 10% larger in dog lung. The microscopic area ratio of the ducts (A/Ao) was found to be approximately 10% larger than the macroscopic area ratio (S/So) in human lung and approximately 22% larger in dog lung. Ducts within human parenchyma were seen to be about twice as stiff as ducts within dog parenchyma over the range of macroscopic stretch studied. This correlates with the volume fractions of collagen and elastin being higher in the human lung than in dog lung. The observed nonuniformity in strain field at the microstructural level suggests the need to include a force balance between alveolar ducts and septal walls when modeling the mechanics of saline-filled parenchyma.


2022 ◽  
Vol 10 (1) ◽  
pp. 62
Author(s):  
Chao Ning ◽  
Yalin Li ◽  
Ping Huang ◽  
Hongbo Shi ◽  
Haichao Sun

Centrifugal pumps are the critical components in deep-sea mining. In order to investigate the particle motion in the curved channel of the impeller, three different types of curvature conform to blade profile to simplify the impeller design of pumps. A numerical study is conducted to investigate the flow field in a varying-curvature channel for solid-liquid two-phase flow. The flow of particles within the varying curvature channel is studied by combining the discrete element method (DEM) with computational fluid dynamics (CFD) and a comparison with Particle Image Velocimetry (PIV) test results. The results show that a polyhedral mesh with a small mesh number yields very accurate results, which makes it very suitable for CFD-DEM. Based on this method, the movement of a single particle is compared and analyzed, and the particle-motion law is obtained. The effects of the curvature ratio Cr and area ratio Ar on the motion law for a single particle are studied, and the simulation results are analyzed statistically. The results show that the effect of Cr on both the particle slip velocity and the turbulent kinetic energy only changes its strength, while the distribution law does not change significantly. Compared with the curvature ratio Cr, the area ratio Ar has a greater impact on the particles, and its distribution law becomes clearly different. As the area ratio Ar increases, the arc radius and length of the corresponding particle trajectory decrease.


2019 ◽  
Vol 136 ◽  
pp. 05014
Author(s):  
Zhangyang Kang ◽  
Zhaoyang Lu ◽  
Xin Deng ◽  
Qiongqiong Yao

A numerical study of heat and mass transfer characteristics of a two-inlet PV/T air collector is performed. The influence of thermal characteristics and efficiency is investigated as the area ratios of inlet and outlet of the single channel with two inlets are changed. The design of the two-inlet PV/T air collector can avoid the poor heat transfer conditions of the single inlet PV/T air collector and improve the total photo-thermal efficiency. When the inlet/outlet cross-sectional area ratio is reduced, the inlet air from the second inlet enhances the convection heat transfer in the second duct and the temperature distribution is more uniform. As the cross-sectional area of the second inlet increase, the maximum heat exchange amount of the two-inlet PV/T air collector occurs between the inlet and outlet cross-sectional area ratio L=0.645 and L=0.562.


2012 ◽  
Vol 26 (9) ◽  
pp. 2773-2781 ◽  
Author(s):  
Yoon Kee Kim ◽  
Dong Yeop Lee ◽  
Hyun Dong Kim ◽  
Joo Ha Ahn ◽  
Kyung Chun Kim

Author(s):  
K-S Yang ◽  
I-Y Chen ◽  
K-H Chien ◽  
C-C Wang

This study numerically investigates the performance of micronozzle/diffuser pump subject to the influence of frequency, opening angle, geometric dimension, and amplitude. For the effect of geometric dimension, the effect of chamber length is far more important than that of chamber depth because it can provide much more effective pumping volume. It is found that the net flowrate of a micropump increased with pumping frequency and opening angle. However, a level-off phenomenon of the net flowrate versus amplitude is seen at amplitudes nearby 150–200 μm and at an opening angle above 10°. This phenomenon is associated with two factors that compensate with each other. One is the free jet flow from the outlet that overturns and blocks the flow from the inlet. The other is the reduction of the strength of jet flow at a larger amplitude owing to effective increase of cross-sectional area.


Author(s):  
Qi Chen ◽  
A. M. Birk

Air-air ejectors are used in a wide range of industrial applications. In gas turbine installations, ejectors are typically used for entraining ventilation air or cooling of exhaust ducting. In some gas turbine applications, the exhaust system must be cooled to limit temperatures inside the structure or to manage heat signatures. The ducts are usually cooled by ejectors with film or effusion cooled diffusers. Entraining diffusers typically have poor pressure recovery and as a result, the ejector performance is affected. This paper presents experimental results on the performance of an air-air ejector with an entraining diffuser. The effects of inlet swirl, and primary nozzle area ratio on the diffuser pressure recovery and ejector pumping were studied. The ejector experiments were carried out on a cold flow wind tunnel that can provide primary air flow rates up to 2.2 kg/s at ambient temperature. Velocity, pressure and temperature measurements were taken in the annulus upstream of the primary nozzle, at the nozzle exit, at the diffuser inlet, on the diffuser walls, and at the diffuser exit. The results show that swirl strongly improves flow non-uniformity at the diffuser exit. The peak pumping performance and the strongest diffuser gap flows was observed with 20° of swirl in the primary nozzle flow. At the no swirl condition, the nozzle area ratio slightly affected the overall entrainment ratio. However, the large nozzle area ratio resulted in the best pumping when swirl was applied.


2018 ◽  
Vol 35 (3) ◽  
pp. 251-263 ◽  
Author(s):  
Parminder Singh ◽  
SidhNath Singh ◽  
V Seshadri

Abstract Air ejector diffusers are employed in gas turbine exhaust systems to cool the exhaust gases. These diffusers are developed as passive devices, which use the energy of the main flow to entrain the relatively cool ambient air through the annular slot openings. Multiple slot openings are provided along the length of ejector diffusers to lower the temperatures of the exhaust gases. This paper presents results of a 3-D numerical study carried out at a fixed Reynolds Number of 2.5×105 with a corresponding inlet Mach number of about 0.22 on three configurations of a non-circular ejector diffuser having an overall area ratio of 9. The three configurations being investigated are the best diffuser configurations established on the basis of cold flow studies reported in literature. The results are presented in terms of temperature distribution, entrainment mass flux rates and static pressure recovery. The results show that the higher number of slot openings improves cooling in the ejector diffuser as compared to thicker interfaces or inclination at the slot inlet.


Sign in / Sign up

Export Citation Format

Share Document