Experimental Determination of Geometric Parameters for an Annular Injection Type Supersonic Ejector

2006 ◽  
Vol 128 (6) ◽  
pp. 1164-1171 ◽  
Author(s):  
Sehoon Kim ◽  
Sejin Kwon

The effects of four geometric parameters of an annular injection supersonic ejector, namely, the primary nozzle exit-to-throat area ratio, the contraction angle of the mixing chamber, the cross-sectional area and L/D ratio of the second-throat on the performance parameters including the secondary flow pressure, the starting pressure and unstarting pressure were investigated experimentally. The starting pressure exhibits linearly proportional dependence on the throat area ratio when the mixing chamber length is less than a certain critical value. For a longer mixing chamber, the starting pressure is proportional to the mixing chamber length while the unstarting pressure depends on the throat area ratio only. The geometric parameters of the second-throat do not affect the static pressure of the secondary flow. This implies that the secondary flow is aerodynamically choked in the mixing chamber and the static pressure of the secondary flow is determined by the choking condition since the mixing chamber of the annular injection ejector is relatively long. Based on the findings by the experiment, a simplified analytical model was proposed to predict the secondary flow pressure. The predicted secondary flow pressure agrees reasonably well with the measurement for a small contraction angle of the mixing chamber.

2021 ◽  
Vol 2097 (1) ◽  
pp. 012012
Author(s):  
Lixing Zheng ◽  
Hongwei Hu ◽  
Changning Mi

Abstract The expansion of primary flow in the suction chamber of the CO2 two-phase ejector is investigated and its influences on the mixing characteristics are analyzed. An ejector model is developed, by constructing differential equations for mass, momentum and energy then get the governing equation. In the suction chamber, the expansion of primary flow and the compression of secondary flow are modeled along the flow path. Based on the constant-pressure mixing theory, the pressure equilibrium positions of two stream (namely at the inlet and inside of mixing chamber, respectively) are considered. The mass and energy transfer in the mixing chamber were analyzed by using the double-flow model formulation. The ejector performance parameters are obtained for the different operation conditions, and the distributions of temperature and velocity of two streams in the mixing chamber are presented. The simulation results showed the influence of primary flow expansion on the pressure lift ratio was relatively obvious, and the larger expansion distance was helpful to improve the mixing efficiency and decrease the thermodynamic entropy change during the mixing. Moreover, the temperature of secondary flow for lower primary flow pressure presented larger descent rates at the initial of mixing. This work is helpful for the improvement of ejector theoretical model and the optimization design.


2019 ◽  
Vol 36 (1) ◽  
pp. 107-112 ◽  
Author(s):  
Ala Bouhanguel ◽  
Philippe Desevaux ◽  
Mohamed Khan

Abstract The measurement of the static pressure of the flow inside a supersonic ejector can be achieved by using a thin tube with a radially drilled hole to capture the flow pressure, and which is inserted along the ejector axis. This paper presents a numerical study by CFD permitting to predict the disturbances generated by the presence of the probe in the ejector. Also this study allows guiding the design of the probe, in particular of the capillary tube diameter for the least disturbed measurement. A probe prototype has been built and tested on an ejector test bench.


1966 ◽  
Vol 8 (1) ◽  
pp. 62-69 ◽  
Author(s):  
B. W. Martin

Following the work of Baker and Martin (1), this paper provides further information about static pressure recovery in axi-symmetric supersonic parallel diffusers of fixed length and the same upstream generating nozzle when the diffuser cross-sectional area is varied over a wide range. Correlations based on these and associated experiments by Martin and Baker (2) indicate an area ratio for maximum possible static pressure recovery. At breakdown of the single shock, the diffuser stagnation pressure ratio corresponds to that for normal shock pressure recovery, while the outlet Mach number becomes independent of area ratio as the latter increases. The factors which influence the development and stability of the single shock regime are considered in some detail, from which the role of the boundary layer is shown to be predominant.


2016 ◽  
Vol 19 (3) ◽  
pp. 13-23
Author(s):  
Kien Chi Le

The enthalpy extraction ratio is one of the most significant parameter of a disk closed cycle MHD generator. There are two methods to improve the enthalpy extraction, those are the increase of channel cross-sectional area ratio and the implementation of inlet swirl. In this study, the mechanism of enthalpy extraction improvement has been confirmed by the two-dimensional numerical calculation. As a result, by increasing the channel cross-sectional area ratio of the disk MHD generator, the increase of static pressure and the velocity deceleration can be suppressed due to the Lorentz force, and it is possible to maintain a high flow velocity inside the channel and a high Hall parameter. The implemention of inlet swirl is possible to maintain a low static pressure inside the channel and the enthalpy extraction ratio rises due to the increase of Hall parameter. In addition, the channel cross-sectional area ratio increases due to the swirl implementation, the static pressure is kept low, and the channel inlet flow velocity increases. This also leads to the increase of enthalpy extraction ratio, that is the increase of output power.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Gernot Seppel ◽  
Andreas Voss ◽  
Daniel J. H. Henderson ◽  
Simone Waldt ◽  
Bernhard Haller ◽  
...  

Abstract Background While supraspinatus atrophy can be described according to the system of Zanetti or Thomazeau there is still a lack of characterization of isolated subscapularis muscle atrophy. The aim of this study was to describe patterns of muscle atrophy following repair of isolated subscapularis (SSC) tendon. Methods Forty-nine control shoulder MRI scans, without rotator cuff pathology, atrophy or fatty infiltration, were prospectively evaluated and subscapularis diameters as well as cross sectional areas (complete and upper half) were assessed in a standardized oblique sagittal plane. Calculation of the ratio between the upper half of the cross sectional area (CSA) and the total CSA was performed. Eleven MRI scans of patients with subscapularis atrophy following isolated subscapularis tendon tears were analysed and cross sectional area ratio (upper half /total) determined. To guarantee reliable measurement of the CSA and its ratio, bony landmarks were also defined. All parameters were statistically compared for inter-rater reliability, reproducibility and capacity to quantify subscapularis atrophy. Results The mean age in the control group was 49.7 years (± 15.0). The mean cross sectional area (CSA) was 2367.0 mm2 (± 741.4) for the complete subscapularis muscle and 1048.2 mm2 (± 313.3) for the upper half, giving a mean ratio of 0.446 (± 0.046). In the subscapularis repair group the mean age was 56.7 years (± 9.3). With a mean cross sectional area of 1554.7 mm2 (± 419.9) for the complete and of 422.9 mm2 (± 173.6) for the upper half of the subscapularis muscle, giving a mean CSA ratio of 0.269 (± 0.065) which was seen to be significantly lower than that of the control group (p < 0.05). Conclusion Analysis of typical atrophy patterns of the subscapularis muscle demonstrates that the CSA ratio represents a reliable and reproducible assessment tool in quantifying subscapularis atrophy. We propose the classification of subscapularis atrophy as Stage I (mild atrophy) in case of reduction of the cross sectional area ratio < 0.4, Stage II (moderate atrophy) in case of < 0.35 and Stage III (severe atrophy) if < 0.3.


2015 ◽  
Vol 66 (3) ◽  
pp. 231-237 ◽  
Author(s):  
Kate Hanneman ◽  
Paaladinesh Thavendiranathan ◽  
Elsie T. Nguyen ◽  
Hadas Moshonov ◽  
Rachel Wald ◽  
...  

Purpose To evaluate the value of cardiac magnetic resonance imaging (MRI)–based measurements of inferior vena cava (IVC) cross-sectional area in the diagnosis of pericardial constriction. Methods Patients who had undergone cardiac MRI for evaluation of clinically suspected pericardial constriction were identified retrospectively. The diagnosis of pericardial constriction was established by clinical history, echocardiography, cardiac catheterization, intraoperative findings, and/or histopathology. Cross-sectional areas of the suprahepatic IVC and descending aorta were measured on a single axial steady-state free-precession (SSFP) image at the level of the esophageal hiatus in end-systole. Logistic regression and receiver-operating curve (ROC) analyses were performed. Results Thirty-six patients were included; 50% (n = 18) had pericardial constriction. Mean age was 53.9 ± 15.3 years, and 72% (n = 26) were male. IVC area, ratio of IVC to aortic area, pericardial thickness, and presence of respirophasic septal shift were all significantly different between patients with constriction and those without ( P < .001 for all). IVC to aortic area ratio had the highest odds ratio for the prediction of constriction (1070, 95% confidence interval [8.0-143051], P = .005). ROC analysis illustrated that IVC to aortic area ratio discriminated between those with and without constriction with an area under the curve of 0.96 (95% confidence interval [0.91-1.00]). Conclusions In patients referred for cardiac MRI assessment of suspected pericardial constriction, measurement of suprahepatic IVC cross-sectional area may be useful in confirming the diagnosis of constriction when used in combination with other imaging findings, including pericardial thickness and respirophasic septal shift.


Author(s):  
R B Anand ◽  
L Rai ◽  
S N Singh

The effect of the turning angle on the flow and performance characteristics of long S-shaped circular diffusers (length-inlet diameter ratio, L/Di = 11:4) having an area ratio of 1.9 and centre-line length of 600 mm has been established. The experiments are carried out for three S-shaped circular diffusers having angles of turn of 15°/15°, 22.5°/22.5° and 30°/30°. Velocity, static pressure and total pressure distributions at different planes along the length of the diffusers are measured using a five-hole impact probe. The turbulence intensity distribution at the same planes is also measured using a normal hot-wire probe. The static pressure recovery coefficients for 15°/15°, 22.5°/22.5° and 30°/30° diffusers are evaluated as 0.45, 0.40 and 0.35 respectively, whereas the ideal static pressure recovery coefficient is 0.72. The low performance is attributed to the generation of secondary flows due to geometrical curvature and additional losses as a result of the high surface roughness (~0.5 mm) of the diffusers. The pressure recovery coefficient of these circular test diffusers is comparatively lower than that of an S-shaped rectangular diffuser of nearly the same area ratio, even with a larger turning angle (90°/90°), i.e. 0.53. The total pressure loss coefficient for all the diffusers is nearly the same and seems to be independent of the angle of turn. The flow distribution is more uniform at the exit for the higher angle of turn diffusers.


Sign in / Sign up

Export Citation Format

Share Document