scholarly journals RICE SEED PRIMING TO OVERCOME SALT STRESS CONDITIONS

2015 ◽  
Vol 6 (5) ◽  
pp. 685-694
Author(s):  
A. Kishk ◽  
M. El-Mowafy
2012 ◽  
Vol 47 (8) ◽  
pp. 1181-1184 ◽  
Author(s):  
Badar‑uz‑Zaman ◽  
Arshad Ali ◽  
Syed Ishtiaq Hyder ◽  
Muhammad Arshadullah ◽  
Saqib Umar Bhatti

The objective of this work was to determine if KCl could be a useful nutrient primer for safe seed germination in maize crop under salt stress conditions. Seed priming was done using 50 mmol L‑1 of muriate of potash, and germination and seedling growth were evaluated after salt stress with NaCl up to 50 mmol L‑1. Another set of seeds was tested under the same salt stress conditions without priming. Under salinity stress, germination percentage, germination rate index, germination coefficient, and seedling vigor indexes were higher in primed seeds. In unprimed seeds, mean germination time increased, while the germination rate index and the fresh and dry matter mass decreased more sharply with salinity stress. The Na/K ratio was higher in unprimed seeds.


2021 ◽  
Author(s):  
Anik HIDAYAH ◽  
Rizka Rohmatin NISAK ◽  
Febri Adi SUSANTO ◽  
Tri Rini NURINGTYAS ◽  
Nobutoshi YAMAGUCHIE ◽  
...  

Abstract Background Saline land in coastal areas has great potential for crop cultivation. Improving salt tolerance in rice is a key to expanding the available area for its growth and thus improving global food security. Seed priming with salt (halopriming) can enhance plant growth and decrease saline intolerance under salt stress conditions during the subsequent seedling stage. However, there is little known about rice defense mechanisms against salinity at seedling stages after seed halopriming treatment. This study focused on the effect of seed halopriming treatment on salinity tolerance in susceptible cultivars, IR 64, resistant cultivars, Pokkali, and two pigmented rice cultivars, Merah Kalimantan Selatan (Merah Kalsel) and Cempo Ireng Pendek (CI Pendek). We grew these cultivars in hydroponic culture, with and without halopriming at the seed stage, under either non-salt or salt stress conditions during the seedling stage. Results The SES scoring assessment showed that the level of salinity tolerance in susceptible cultivar, IR 64, and moderate cultivar, Merah Kalsel, improved after seed halopriming treatment. Furthermore improved the growth performance of IR 64 and Merah Kalsel rice seedlings. Quantitative PCR revealed that seed halopriming induced expression of the OsNHX1 and OsHKT1 genes in susceptible rice cultivar, IR 64 and Merah Kalsel thereby increasing the level of resistance to salinity. The level expression of OsSOS1 and OsHKT1 genes in resistant cultivar, Pokkali, also increased but not affected on the level of salinity tolerance. On the contrary, seed halopriming decreased the level expression of OsSOS1 genes in pigmented rice cultivar, CI Pendek, but not affected on the level of salinity tolerance. The transporter gene expression induction significantly improved salinity tolerance in salinity-susceptible rice, IR 64, and moderate tolerant rice cultivar, Merah Kalsel. Induction of expression of the OsSOS1 gene in susceptible rice, IR 64, after halopriming seed treatment leads to balance the osmotic pressure by ion exclusion mechanisms, so that be tolerant to salinity stress. Conclusion These results suggest that seed halopriming can improves salinity tolerance of salinity-susceptible and moderate tolerant rice cultivars.


Author(s):  
MF Ghafoor ◽  
Q Ali ◽  
A Malik

The present research experiment was conducted in the greenhouse of the Institute of Molecular Biology and Biotechnology, The University of Lahore for determining the possible involvement of salicylic acid (SA) in seed priming and affects on the seedling growth and development under NaCl treatments in wheat variety ANAJ-2017, Shafaq-2006 and Galaxy-2013. The data was collected for various seedling traits and statistically analyzed, which revealed the significance of results for treatments, salt applications, genotypes and the interactions between salt treatments and genotypes. The lower coefficient of variation was recorded for all studied traits which revealed that there was consistency among the results for salicylic acid applications and salt or NaCl treatments. It was concluded from our study that the application of salicylic acid (SA) under salt (NaCl) stress conditions helps wheat seedlings to withstand and compete with stressful conditions. The study revealed that the seed priming with salicylic acid helps to improve root length, shoot length, seedling moisture percentage and fresh seedling weights. The application of NaCl caused to increase the root length, number of roots and shoot length of wheat while salicylic acid (SA) was applied in foliar spray. The use of water priming shows medium effects for the seedling growth of wheat under salt stress environmental conditions. The wheat variety Galaxy-2013 has shown good performance for most of the studied traits of seedlings under salt stress conditions. It was suggested from our study that the variety Galaxy-2013 may be used under salt stress conditions or salt affected soils to improve grain yield of wheat.


2015 ◽  
Vol 60 (2) ◽  
pp. 109-117 ◽  
Author(s):  
Zlatica Miladinov ◽  
Svetlana Balesevic-Tubic ◽  
Vuk Djordjevic ◽  
Vojin Djukic ◽  
Aleksandar Ilic ◽  
...  

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Binghua Liu ◽  
Xinghong Liu ◽  
Fangchun Liu ◽  
Hailin Ma ◽  
Bingyao Ma ◽  
...  

AbstractComparative evaluations were conducted to assess the effects of different pH levels, NaCl-induced salt stress, and PEG-induced drought stress on the mycelial growth of Xerocomus badius. The results showed that X. badius mycelium grew well at a wide pH range of 5.00 ~ 9.00. Although the mycelium remained viable, mycelial growth of X. badius was significantly inhibited with increasing salt and drought stresses. Furthermore, a soilless experiment in Petri dishes was performed to investigate the potential of X. badius to induce beneficial effects on seed germination and seedling growth of annual ryegrass (Lolium multiflorum Lam.) under salt and drought stresses. Seed priming with X. badius enhanced the seedling growth of L. multiflorum Lam. under NaCl-induced salt stress and PEG-induced drought stress. However, X. badius did not significantly improve the seed germination under non-stress and mild stress conditions. It suggested that X. badius inoculation with seeds was not essential for seed germination under non-stress and mild stress conditions, but contributed highly to seedling growth under severe stress conditions. Therefore, seed priming with X. badius on ryegrass could be an effective approach to enhance plant tolerance against drought and salt stresses. X. badius could be a good candidate for the inoculation of ectomycorrhizal plants cultivation programs in mild saline and semiarid areas.


2023 ◽  
Vol 83 ◽  
Author(s):  
A. Younas ◽  
W. Xiukang ◽  
Z. Yousaf ◽  
S. Fiaz ◽  
A. Riaz ◽  
...  

Abstract A huge amount of rice cultivation and consumption occur in Asia particularly in Pakistan and China. However, multiple abiotic stresses especially high and low-temperature proved to be a substantial threat for rice production ultimately risks for food security. To overcome various types of abiotic stress; seed priming is among the effective approaches to improve the rice seed germination and growth vigor. Therefore, the present study was planned to evaluate physiological and biochemical modifications in Chinese and Pakistani rice varieties by Qiangdi 863 biological assistant growth apparatus nano treated water (NTW), Osmopriming Calcium chloride (CaCl2), redox priming hydrogen peroxide (H2O2) and hormonal priming by Salicylic acid (SA) under temperature stress conditions. The experiment was performed with completely randomize design conditions. Five rice varieties, nomenclature as Zhongzoa 39, (Chinese rice variety) KSK 133, KS 282, Super basmati and PK 1121 aromatic (Pakistani rice variety) were sown under low temperature (LT) (17ºC), optimal temperature (OT) 27ºC and high temperature (HT) 37ºC conditions. The present study indicated that nanopriming were the most effective treatments increased Germination Energy Percentage (GEP) (96.1, 100, 100%), Speed of Germination (SG) (27.2, 35.45, 37.1), Final Germination Percentage (FGP) (98.2, 99.1, 99.4%), Seedling Dry Weight Biomass (DWB) (0.1, 0.137, 0.14g), Total Chlorophyll Content (0.502, 13.74, 15.21), antioxidant enzymes Superoxide Dismutase (SOD)(3145, 2559, 3345 µg-1FWh-1), Catalase (CAT) (300, 366, 3243 µg-1FWh-1) and decreased Malondialdehyde (MDA) (6.5, 12.2, 6.5 µmol g-1 FW) for Zhongzao 39 and KSK 133 rice varieties under low (LT+NTW), optimal temperature (OP+NTW) and high temperature (HT+NTW) stress., Therefore, nano-priming is recommended to cope with the high and low-temperature stress conditions along with improved productivity of rice.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 749
Author(s):  
Ping Huang ◽  
Lili He ◽  
Adeel Abbas ◽  
Sadam Hussain ◽  
Saddam Hussain ◽  
...  

Seed priming with sorghum water extract (SWE) enhances crop tolerance to salinity stress; however, the application of SWE under salinity for camelina crop has not been documented so far. This study evaluated the potential role of seed priming with SWE in improving salt stress tolerance in camelina. Primed (with 5% SWE and distilled water-hydropriming) and nonprimed seeds were sown under control (no salt) and salt stress (10 dS m−1) conditions. Salinity reduced camelina’s emergence and growth, while seed priming with SWE improved growth under control and stress conditions. Under salt stress, seed priming with SWE enhanced emergence percentage (96.98%), increased root length (82%), shoot length (32%), root dry weight (75%), shoot dry weight (33%), α-amylase activity (66.43%), chlorophyll content (60–92%), antioxidant enzymes activity (38–171%) and shoot K+ ion (60%) compared with nontreated plants. Similarly, under stress conditions, hydrogen peroxide, malondialdehyde (MDA) content, and shoot Na+ ion were reduced by 60, 31, and 40% by seed priming with SWE, respectively, over the nonprimed seeds. Therefore, seed priming with SWE may be used to enhance the tolerance against salt stress in camelina.


2016 ◽  
Vol 42 (12) ◽  
pp. 1764 ◽  
Author(s):  
Sheng-Hui ZHOU ◽  
Qiu-Hong WU ◽  
Jing-Zhong XIE ◽  
Jiao-Jiao CHEN ◽  
Yong-Xing CHEN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document