scholarly journals EFFECTS OF SALICYLIC ACID PRIMING FOR SALT STRESS TOLERANCE IN WHEAT

Author(s):  
MF Ghafoor ◽  
Q Ali ◽  
A Malik

The present research experiment was conducted in the greenhouse of the Institute of Molecular Biology and Biotechnology, The University of Lahore for determining the possible involvement of salicylic acid (SA) in seed priming and affects on the seedling growth and development under NaCl treatments in wheat variety ANAJ-2017, Shafaq-2006 and Galaxy-2013. The data was collected for various seedling traits and statistically analyzed, which revealed the significance of results for treatments, salt applications, genotypes and the interactions between salt treatments and genotypes. The lower coefficient of variation was recorded for all studied traits which revealed that there was consistency among the results for salicylic acid applications and salt or NaCl treatments. It was concluded from our study that the application of salicylic acid (SA) under salt (NaCl) stress conditions helps wheat seedlings to withstand and compete with stressful conditions. The study revealed that the seed priming with salicylic acid helps to improve root length, shoot length, seedling moisture percentage and fresh seedling weights. The application of NaCl caused to increase the root length, number of roots and shoot length of wheat while salicylic acid (SA) was applied in foliar spray. The use of water priming shows medium effects for the seedling growth of wheat under salt stress environmental conditions. The wheat variety Galaxy-2013 has shown good performance for most of the studied traits of seedlings under salt stress conditions. It was suggested from our study that the variety Galaxy-2013 may be used under salt stress conditions or salt affected soils to improve grain yield of wheat.

Author(s):  
Shaila Shermin Tania ◽  
Md. Moklasur Rahaman ◽  
Farjana Rauf ◽  
Mehera Afroj Suborna ◽  
Muhammad Humayun Kabir ◽  
...  

Aim: Salinity is a major barrier to successful crop production. Seed priming and exogenous application of different signaling molecules can efficiently confer salinity tolerance. Wheat is a major cereal crop in the world and salinity drastically reduces the wheat seedling growth and yield. Therefore, the present study was conducted to explore the potentiality of different signaling molecules such as salicylic acid (SA) and H2O2 to alleviate the salinity-induced growth inhibition of wheat. Place and Duration of the Study: The study was conducted in the Department of Seed Science and Technology, Bangladesh Agricultural University, from September-October, 2021. Methodology: The wheat (cv. BARI-Gom 24) seeds were soaked in normal tap water (hydro-priming), 1 mM SA, 2 mM SA, 0.1 mM H2O2, and 0.15 mM H2O2 solutions for 30 minutes. The untreated seeds were used as control. Eventually, primed seeds were exposed to 150 mM NaCl in Petri dishes during germination. Primed and non-primed seedlings were grown for 15 days under 150 mM NaCl stress condition. Results: The result revealed that salt stress significantly reduced germination percentage (GP), germination index (GI), seed vigor index (SVI), shoot and root length. The results also exhibited that photosynthetic pigments, total chlorophyll, carotenoids, lycopene, and beta-carotene contents were significantly reduced by salt stress. Seed priming with SA and H2O2 and hydro-priming promoted the germination percentage, seedling growth (including shoot and root length), SVI, and photosynthetic pigments. Conclusion: Pretreatment with 1 mM SA and 0.1 mM H2O2 was observed to be relatively more efficient in conferring salinity tolerance of wheat compared with other treating conditions. Overall, this study suggests that wheat seed priming with SA and H2O2 and hydro-priming can improve salinity tolerance. Aim: Salinity is a major barrier to successful crop production. Seed priming and exogenous application of different signaling molecules can efficiently confer salinity tolerance. Wheat is a major cereal crop in the world and salinity drastically reduces the wheat seedling growth and yield. Therefore, the present study was conducted to explore the potentiality of different signaling molecules such as salicylic acid (SA) and H2O2 to alleviate the salinity-induced growth inhibition of wheat. Place and Duration of the Study: The study was conducted in the Department of Seed Science and Technology, Bangladesh Agricultural University, from September-October, 2021. Methodology: The wheat (cv. BARI-Gom 24) seeds were soaked in normal tap water (hydro-priming), 1 mM SA, 2 mM SA, 0.1 mM H2O2, and 0.15 mM H2O2 solutions for 30 minutes. The untreated seeds were used as control. Eventually, primed seeds were exposed to 150 mM NaCl in Petri dishes during germination. Primed and non-primed seedlings were grown for 15 days under 150 mM NaCl stress condition. Results: The result revealed that salt stress significantly reduced germination percentage (GP), germination index (GI), seed vigor index (SVI), shoot and root length. The results also exhibited that photosynthetic pigments, total chlorophyll, carotenoids, lycopene, and beta-carotene contents were significantly reduced by salt stress. Seed priming with SA and H2O2 and hydro-priming promoted the germination percentage, seedling growth (including shoot and root length), SVI, and photosynthetic pigments. Conclusion: Pretreatment with 1 mM SA and 0.1 mM H2O2 was observed to be relatively more efficient in conferring salinity tolerance of wheat compared with other treating conditions. Overall, this study suggests that wheat seed priming with SA and H2O2 and hydro-priming can improve salinity tolerance.


Author(s):  
Anita Mann ◽  
Gurpreet Kaur ◽  
Ashwani Kumar ◽  
Satish Kumar Sanwal ◽  
Jogendra Singh ◽  
...  

Screening of chickpea lines for salt tolerance through seed germination and early seedling growth is crucial for their evaluation. Seeds of 30 chickpea genotypes were germinated on a sand bed irrigated with saline (3, 6, 9, 12 dS/m) and control solutions upto 30 days. At the early seedling stage (25-30 days), germination percentage, chlorophyll content, proline, root length, shoot length and seedling dry weight were found to be affected due to salinity. Salt tolerance index (STI) for plant biomass maintained a significant correlation with chlorophyll, proline, shoot length, and root length, which indicated that these parameters could be used as selection criteria for screening chickpea genotypes against salt stress. Significant differences in shoot length, root length, and seedling dry weight in 30-day-old seedlings were observed among selected chickpea genotypes as well. From the overall observation of germination characterstics and early seedling growth, it is concluded that the chickpea genotypes, HC-1, HC-5, ICC 867, ICC 5003, H-10-41 showed better salt tolerance as compared to the available salt tolerant check variety.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Binghua Liu ◽  
Xinghong Liu ◽  
Fangchun Liu ◽  
Hailin Ma ◽  
Bingyao Ma ◽  
...  

AbstractComparative evaluations were conducted to assess the effects of different pH levels, NaCl-induced salt stress, and PEG-induced drought stress on the mycelial growth of Xerocomus badius. The results showed that X. badius mycelium grew well at a wide pH range of 5.00 ~ 9.00. Although the mycelium remained viable, mycelial growth of X. badius was significantly inhibited with increasing salt and drought stresses. Furthermore, a soilless experiment in Petri dishes was performed to investigate the potential of X. badius to induce beneficial effects on seed germination and seedling growth of annual ryegrass (Lolium multiflorum Lam.) under salt and drought stresses. Seed priming with X. badius enhanced the seedling growth of L. multiflorum Lam. under NaCl-induced salt stress and PEG-induced drought stress. However, X. badius did not significantly improve the seed germination under non-stress and mild stress conditions. It suggested that X. badius inoculation with seeds was not essential for seed germination under non-stress and mild stress conditions, but contributed highly to seedling growth under severe stress conditions. Therefore, seed priming with X. badius on ryegrass could be an effective approach to enhance plant tolerance against drought and salt stresses. X. badius could be a good candidate for the inoculation of ectomycorrhizal plants cultivation programs in mild saline and semiarid areas.


Author(s):  
F Yousef ◽  
F Shafique ◽  
Q Ali ◽  
A Malik

Chickpea (Cicer arietinum L.) and pea (Pisum sativum L.) both are important legume crops grown throughout the world for protein and they also contain essential vitamins and fibers. Chick pea and pea are very sensitive to abiotic stress that includes heat, drought, cold and salt stress conditions. To access the effects of salt stress on the chick pea and pea an experiment was performed in the Green House of Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore. The seeds of both genotypes were grown in 18 pots with 2 kg pure sand and applied different concentrations of NaCl stress after 7 days of germination. The application of salt treatments was repeated 4 times each after 7days interval and data of different morphological traits was recorded each time. The treatments were included control, 0.25Molar NaCl, 0.5Molar NaCl concentrations. The data was recorded and pooled analysis of variance was carried out for significance of results. The average root length was recorded as 5.7522±0.0211cm and shoot length (11.139±0.0011cm) while average fresh plant weight was recorded as 0.5811±0.0002g under different salt stress conditions. The finding of our result proved that both varieties chickpea and pea showed variable behavior under salt stress conditions while the pea genotype showed more tolerant against different salt treatments which indicated pea genotypes may be used for future breeding to improve yield and growth of pea crop. The results showed that there was significant and positive correlation among root length, shoot length and leaf length of chickpea and pea seedlings which concluded that root length and shoot length may be used as selection criteria to induced stress tolerance in crop plants.


Author(s):  
A Aftab ◽  
MA Haider ◽  
Q Ali ◽  
A Malik

The Coriandrum is most important among the herb which is used as an ingredient in daily human food. It contains a good amount of antioxidants and health improving ingredients that save human body cells from diseases. It is very sensitive for abiotic environmental stress conditions involving drought, heat, and salt stress as important stress conditions. For this purpose, a study was planned to conduct in the greenhouse of the Institute of Molecular Biology and Biotechnology, University of Lahore to determine the effects of salt stress on Coriandrum seedling growth. For our study we have selected four Coriandrum varieties viz., GAMZE, EAGLE, SUPER XO, and PAK-ORG. The results revealed that there were significant differences among the treatments of NaCl concentrations, Coriandrum genotypes, and the interactions among the Coriandrum genotypes and salt concentrations applied. The average Coriandrum seedling length was recorded as 23.021±1.2026cm while root length was recorded as 22.0128±1.0027cm. The genotype GAMZE showed higher root and shoot length which indicated that GAMZE was a higher salt-tolerant genotype and may be used as a salt-tolerant genotype to improve yield per plant in Coriandrum. The genotype EAGLE has shown poor performance for all of the studied traits which indicated that it was a salt-sensitive Coriandrum genotype. The genetic advance and heritability were found higher for all of the studied traits. The significant correlation between shoot length and root length indicated that the genotypes grow longer roots under stress conditions to increase the shoot length of plants while survive under stressful environmental conditions. The selection of Coriandrum genotype on the basis of root length and shoot length may be useful to improve slat stress tolerance in Coriandrum genotypes for higher seed and green plant biomass yield.


2018 ◽  
Vol 51 (3) ◽  
pp. 51-68 ◽  
Author(s):  
M.K. Hasan ◽  
M.S. Islam ◽  
M.R. Islam ◽  
H.N. Ismaan ◽  
A. El Sabagh

Abstract A laboratory experiment regarding germination and seedling growth test was conducted with three black gram genotypes tested under three salinity levels (0, 75 and 150 mM), for 10 days, in sand culture within small plastic pot, to investigate the germination and seedling growth characteristics. Different germination traits of all black gram genotypes, like germination percentage (GP), germination rate (GR), coefficient of velocity of germination (CVG) greatly reduced, as well as mean germination time (MGT) increased with increasing salt stress. At high salt stress, BARI Mash-3 provided the highest GP reduction (28.58%), while the lowest was recorded (15.79% to control) in BARI Mash-1. Salinity have the negative impact on shoot and root lengths, fresh and dry weights. The highest (50.32% to control) and lowest reduction (36.39%) of shoot length were recorded in BARI Mash-2 and BARI Mash-1, respectively, under 150 mM NaCl saline conditions. There were significant reduction of root lengths, root fresh and dry weight, shoot length, shoot fresh and dry weight in all genotypes under saline condition. The genotypes were arranged as BARI Mash-1 > BARI Mash-3 > BARI Mash-2, with respect to salinity tolerance.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lawan Gana Ali ◽  
Rosimah Nulit ◽  
Mohd Hafiz Ibrahim ◽  
Christina Yong Seok Yien

AbstractRice is an important staple crop produced and consumed worldwide. However, poor seed emergence is one of the main impediments to obtaining higher yield of rice especially in hot and dry ecosystems of the world that are ravaged by drought. Therefore, this study was carried out to evaluate the effects of potassium nitrate (KNO3), salicylic acid (SA) and silicon dioxide (SiO2) priming in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44 rice under drought conditions. Rice seedlings primed with 2.5% and 5% KNO3, 3% and 3.5% SiO2, and 1 mM and 2.5 mM SA were subjected to three drought levels of low, moderate and severe under the greenhouse. Seed emergence, seedling growth, biochemical attributes and antioxidant activities were thereafter evaluated. Seed priming experiments were laid in a completely randomized design with five replicates per treatment. The results found that rice seedlings responded differently to different priming treatments. However, all primed rice seedlings had significantly (P ≤ 0.05) improved emergence percentage (72–92%), seedling growth, seedling vigor, seedling fresh and dry biomass and shorter emergence time compared with controls. Likewise, total soluble protein content, activities of catalase, ascorbate peroxidase and superoxide dismutase, carbohydrate, soluble sugar and total chlorophyll contents of rice seedlings were increased by more than two-folds by seed priming compared with control. Salicylic acid showed less effect in increasing emergence, seedling growth, antioxidant activities and biochemical attributes of rice. Thus, this study established that seed priming with KNO3 (2.5% and 5%) and SiO2 (3% and 3.5%) were more effective in improving emergence, seedling growth, biochemical attributes and antioxidant activities of FARO44. Thus, priming of FARO44 rice with this chemical is recommended for fast emergence, seedling growth and drought resistance in dry ecosystems.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1193
Author(s):  
Muhammad Sohail Saddiq ◽  
Shahid Iqbal ◽  
Muhammad Bilal Hafeez ◽  
Amir M. H. Ibrahim ◽  
Ali Raza ◽  
...  

Salinity is a leading threat to crop growth throughout the world. Salt stress induces altered physiological processes and several inhibitory effects on the growth of cereals, including wheat (Triticum aestivum L.). In this study, we determined the effects of salinity on five spring and five winter wheat genotypes seedlings. We evaluated the salt stress on root and shoot growth attributes, i.e., root length (RL), shoot length (SL), the relative growth rate of root length (RGR-RL), and shoot length (RGR-SL). The ionic content of the leaves was also measured. Physiological traits were also assessed, including stomatal conductance (gs), chlorophyll content index (CCI), and light-adapted leaf chlorophyll fluorescence, i.e., the quantum yield of photosystem II (Fv′/Fm′) and instantaneous chlorophyll fluorescence (Ft). Physiological and growth performance under salt stress (0, 100, and 200 mol/L) were explored at the seedling stage. The analysis showed that spring wheat accumulated low Na+ and high K+ in leaf blades compared with winter wheat. Among the genotypes, Sakha 8, S-24, W4909, and W4910 performed better and had improved physiological attributes (gs, Fv′/Fm′, and Ft) and seedling growth traits (RL, SL, RGR-SL, and RGR-RL), which were strongly linked with proper Na+ and K+ discrimination in leaves and the CCI in leaves. The identified genotypes could represent valuable resources for genetic improvement programs to provide a greater understanding of plant tolerance to salt stress.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 903
Author(s):  
Wenrui Gao ◽  
Yan Liu ◽  
Juan Huang ◽  
Yaqiu Chen ◽  
Chen Chen ◽  
...  

Seed germination is an important phase transitional period of angiosperm plants during which seeds are highly sensitive to different environmental conditions. Although seed germination is under the regulation of salicylic acid (SA) and other hormones, the molecular mechanism underlying these regulations remains mysterious. In this study, we determined the expression of SA methyl esterase (MES) family genes during seed germination. We found that MES7 expression decreases significantly in imbibed seeds, and the dysfunction of MES7 decreases SA content. Furthermore, MES7 reduces and promotes seed germination under normal and salt stress conditions, respectively. The application of SA restores the seed germination deficiencies of mes7 mutants under different conditions. Taking together, our observations uncover a MeSA hydrolytic enzyme, MES7, regulates seed germination via altering SA titer under normal and abiotic stress conditions.


Sign in / Sign up

Export Citation Format

Share Document