scholarly journals Seed Priming with Sorghum Water Extract Improves the Performance of Camelina (Camelina sativa (L.) Crantz.) under Salt Stress

Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 749
Author(s):  
Ping Huang ◽  
Lili He ◽  
Adeel Abbas ◽  
Sadam Hussain ◽  
Saddam Hussain ◽  
...  

Seed priming with sorghum water extract (SWE) enhances crop tolerance to salinity stress; however, the application of SWE under salinity for camelina crop has not been documented so far. This study evaluated the potential role of seed priming with SWE in improving salt stress tolerance in camelina. Primed (with 5% SWE and distilled water-hydropriming) and nonprimed seeds were sown under control (no salt) and salt stress (10 dS m−1) conditions. Salinity reduced camelina’s emergence and growth, while seed priming with SWE improved growth under control and stress conditions. Under salt stress, seed priming with SWE enhanced emergence percentage (96.98%), increased root length (82%), shoot length (32%), root dry weight (75%), shoot dry weight (33%), α-amylase activity (66.43%), chlorophyll content (60–92%), antioxidant enzymes activity (38–171%) and shoot K+ ion (60%) compared with nontreated plants. Similarly, under stress conditions, hydrogen peroxide, malondialdehyde (MDA) content, and shoot Na+ ion were reduced by 60, 31, and 40% by seed priming with SWE, respectively, over the nonprimed seeds. Therefore, seed priming with SWE may be used to enhance the tolerance against salt stress in camelina.

HortScience ◽  
2000 ◽  
Vol 35 (5) ◽  
pp. 907-909 ◽  
Author(s):  
Wallace G. Pill ◽  
Elizabeth A. Kilian

`Moss Curled' seeds of parsley (Petroselinum crispum L.) were primed osmotically in polyethylene glycol or matrically in fine, exfoliated vermiculite at –0.5 MPa for 4 or 7 days at 20 or 30 °C with 0 or 1 mm GA3. All priming treatments stimulated and hastened germination. Matric priming resulted in greater germination (89%) than osmotic priming (83%) when seeds were primed for 7 days at 30 °C, but priming agent had no effect on germination percentage following priming at 20 °C or for 4 days. In seeds primed for 4 days at 20 or 30 °C, matric priming hastened germination more than did osmotic priming. Germination was generally less synchronous with matric than with osmotic priming. Increasing priming time from 4 to 7 days increased the rate of germination, but increased germination synchrony only when seeds were primed at 20 °C. Inclusion of 1 mm GA3 during priming had little or no effect on germination. All matric priming treatments (other than 4-day priming) were repeated to assess seedling emergence in a greenhouse (25°C day/22 °C night). Priming increased the percentage, rate and synchrony of emergence, and increased hypocotyl length at 3 weeks after planting. Priming at 30 °C with 1 mm GA3 resulted in the greatest emergence percentage, hypocotyl length, and shoot dry weight. We conclude that matric priming is a satisfactory alternative to osmotic priming of parsley seeds. Chemical name used: gibberellic acid (GA3).


Author(s):  
Hamid Mohammadi ◽  
Saeid Hazrati ◽  
Laleh Parviz

<p>Salt stress is one of the most important factors limiting the growth and yield of plants around the world. However, silicon can reduce the harmful effects of salt stress on plants. For this purpose, an experiment was conducted in a factorial arrangement on randomized complete block design with three replications in a research greenhouse on the Satureja hortensis medicinal plant. Experimental treatments consisted of two salinity levels (control and 100 mM) and potassium silicate (Si) at three levels (0, 1, and 2 mM). The results showed that salinity reduced shoot dry weight, photosynthetic pigments and potassium content of shoot. However, sodium, proline, MDA, and H2O2 contents in shoot increased. The highest shoot dry weight, photosynthetic pigment content, proline, RWC, and the lowest content of MDA and H2O2 of the shoot were observed with Si application under salt stress and non-salt stress conditions. The highest yield of essential oil was also observed with Si application under salt stress and non-salt stress conditions. Therefore, the use of silicon in salt stress condition not only minimizes the harmful effects of salt stress by increasing the K+/Na+ ratio and improving the morphological and physiological traits of the Satureja hortensis medicinal plant but also improves the essential oil yield of this medicinal plant in salt stress and non-salt stress conditions.</p>


2007 ◽  
Vol 58 (8) ◽  
pp. 811 ◽  
Author(s):  
S. Zhang ◽  
J. Hu ◽  
Y. Zhang ◽  
X. J. Xie ◽  
Allen Knapp

Salt stress is an important constraint to lucerne (Medicago sativa L.) production in many parts of the world. Seeds of 3 lucerne varieties, cvv. Victoria, Golden Empress, and Victor, were used to investigate the effects of seed priming with 5 µm/L brassinolide on germination and seedling growth under a high level of salt stress (13.6 dS/m NaCl solution). The results showed that germination percentage, germination index, and vigour index of lucerne seeds primed with brassinolide were significantly higher than those of the non-primed seeds under salinity stress in each variety. Seed priming with brassinolide significantly increased the shoot fresh weight, shoot dry weight, and root dry weight in 2 varieties, and significantly increased the root length and root vigour in each variety. It also significantly increased the activities of antioxidant enzymes, peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), in Victoria and Victor seedlings. During seedling growth, the primed seeds significantly reduced the malondialdehyde (MDA) accumulation. This suggests that priming lucerne seed with brassinolide at a suitable concentration can improve germination and seedling growth under high-saline soils.


2001 ◽  
Vol 11 (1) ◽  
pp. 152
Author(s):  
Wallace G. Pill ◽  
Elizabeth A. Kilian

`Moss Curled' seeds of parsley (Petroselinum crispum L.) were primed osmotically in polyethylene glycol or matrically in fine, exfoliated vermiculite at -0.5 MPa for 4 or 7 days at 20 or 30 °C with 0 or 1 mm GA3. All priming treatments stimulated and hastened germination. Matric priming resulted in greater germination (89%) than osmotic priming (83%) when seeds were primed for 7 days at 30 °C, but priming agent had no effect on germination percentage following priming at 20 °C or for 4 days. In seeds primed for 4 days at 20 or 30 °C, matric priming hastened germination more than did osmotic priming. Germination was generally less synchronous with matric than with osmotic priming. Increasing priming time from 4 to 7 days increased the rate of germination, but increased germination synchrony only when seeds were primed a t 20 °C. Inclusion of 1 mm GA3 during priming had little or no effect on germination. All matric priming treatments (other than 4-day priming) were repeated to assess seedling emergence in a greenhouse (25°C day/22 °C night). Priming increased the percentage, rate and synchrony of emergence, and increased hypocotyl length at 3 weeks after planting. Priming at 30 °C with 1 mm GA3 resulted in the greatest emergence percentage, hypocotyl length, and shoot dry weight. We conclude that matric priming is a satisfactory alternative to osmotic priming of parsley seeds. Chemical name used: gibberellic acid (GA3).


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245505
Author(s):  
Xiaofei Chen ◽  
Ruidong Zhang ◽  
Yifan Xing ◽  
Bing Jiang ◽  
Bang Li ◽  
...  

Sorghum [Sorghum bicolor (L.) Moench] seed germination is sensitive to salinity, and seed priming is an effective method for alleviating the negative effects of salt stress on seed germination. However, few studies have compared the effects of different priming agents on sorghum germination under salt stress. In this study, we quantified the effects of priming with distilled water (HP), sodium chloride (NaCl), potassium chloride (KCl), calcium chloride (CaCl2), and polyethylene glycol (PEG) on sorghum seed germination under 150 mM NaCl stress. The germination potential, germination rate, germination index, vigor index, root length, shoot length, root fresh weight, shoot fresh weight, root dry weight, and shoot dry weight were significantly reduced by salt stress. Different priming treatments alleviated the germination inhibition caused by salt stress to varying degrees, and 50 mM CaCl2 was the most effective treatment. In addition, the mitigation effect of priming was stronger on root traits than on shoot traits. Mitigation efficacy was closely related to both the type of agent and the concentration of the solution. Principal component analysis showed that all concentrations of CaCl2 had higher scores and were clearly distinguished from other treatments based on their positive effects on all germination traits. The effects of the other agents varied with concentration. The priming treatments were divided into three categories based on their priming efficacy, and the 50, 100, and 150 mM CaCl2 treatments were placed in the first category. The 150 mM KCl, 10% PEG, HP, 150 mM NaCl, 30% PEG, and 50 mM KCl treatments were placed in the second category, and the 100 mM NaCl, 100 mM KCl, 20% PEG, and 50 mM NaCl treatments were least effective and were placed in the third category. Choosing appropriate priming agents and methods for future research and applications can ensure that crop seeds germinate healthily under saline conditions.


2001 ◽  
Vol 19 (1) ◽  
pp. 11-14 ◽  
Author(s):  
Wallace G. Pill ◽  
James A. Gunter

Abstract This study was conducted to determine whether treating seeds of ‘Sensation Mixed’ cosmos (Cosmos bipinnatus Cav.) and ‘Bonanza Gold’ marigold (Tagetes patula L.) with paclobutrazol (PB) could suppress seedling growth. Seeds were soaked in solutions of 0, 500 or 1000 mg PB/liter (ppm PB) for 16 hours at 25C (77F) or they were primed [−0.5 MPa (−5 bars) for 7 days at 20C (68F)] in Grade 5 exfoliated vermiculite moistened with 0, 500 or 1000 ppm PB solltuions. Soaked and primed seeds were dried for 1 day at 19C (65F) and 25% relative humidity. These seeds and control (non-treated) seeds were sown into plug cells containing peat-lite. Increasing PB concentration decreased cosmos shoot height at 32 days after planting (DAP), but decreased emergence percentage, responses that were more pronounced with priming than with soaking. A 1 ppm PB growth medium drench [30 ml/cell(0.2 mg PB/cell)] and, to a greater extent a 10 mg PB/liter (ppm PB) shoot spray [2 ml/shoot (0.02 mg PB/shoot)], both applied at 10 DAP, resulted in greater cosmos shoot height suppression at 32 DAP than treatment of seeds with 1000 ppm PB. Soaking marigold seeds in 1000 ppm PB failed to decrease shoot height below those of plants from non-treated seeds at 32 DAP. However, exposure to 1000 ppm PB during priming of marigold seeds resulted in a similar shoot height suppression (13%) as the growth medium drench, and similar shoot dry weight reduction (21%) as the shoot spray. Suppression of shoot growth by this seed treatment was short-term since by five weeks after transplanting into 15 cm (6 in) pots, only marigold plants that had received the growth medium drench or shoot spray were smaller than those of control plants. Treating marigold seeds with 1000 mg ppm PB used about one-fifth the PB used to drench the growth medium.


2018 ◽  
Vol 48 (3) ◽  
Author(s):  
Yongzhe Ren ◽  
Yanhua Xu ◽  
Wan Teng ◽  
Bin Li ◽  
Tongbao Lin

ABSTRACT: Soil salinity limits agricultural production and is a major obstacle for increasing crop yield. Common wheat is one of the most important crops with allohexaploid characteristic and a highly complex genome. QTL mapping is a useful way to identify genes for quantitative traits such as salinity tolerance in hexaploid wheat. In the present study, a hydroponic trial was carried out to identify quantitative trait loci (QTLs) associated with salinity tolerance of wheat under 150mM NaCl concentration using a recombinant inbred line population (Xiaoyan 54×Jing 411). Values of wheat seedling traits including maximum root length (MRL), root dry weight (RDW), shoot dry weight (SDW), total dry weight (TDW) and the ratio of TDW of wheat plants between salt stress and control (TDWR) were evaluated or calculated. A total of 19QTLs for five traits were detected through composite interval mapping method by using QTL Cartographer version 2.5 under normal and salt stress conditions. These QTLs distributed on 12 chromosomes explained the percentage of phenotypic variation by individual QTL varying from 7.9% to 19.0%. Among them, 11 and six QTLs were detected under normal and salt stress conditions, respectively and two QTLs were detected for TDWR. Some salt tolerance related loci may be pleiotropic. Chromosome 1A, 3A and 7A may harbor crucial candidate genes associated with wheat salt tolerance. Our results would be helpful for the marker assisted selection to breed wheat varieties with improved salt tolerance.


Sign in / Sign up

Export Citation Format

Share Document