scholarly journals Assessing the hydrological impacts of coal resource development: a case study from Australia

Author(s):  
David A. Post ◽  

The objective of this study is to predict regional-scale cumulative impacts on water resources caused by coal resource developments in the Gloucester subregion of New South Wales (NSW), Australia. A key outcome of the assessment is identifying areas where water resources are very unlikely to be impacted (with a less than 5% chance) from those where water resources are potentially impacted (at least a 5% chance). Governments, industry and the community can then focus on areas that are potentially impacted when making regulatory, water management and planning decisions. Potential impacts were ruled out using a zone of potential hydrological change. This zone was defined based on at least a 5% chance of exceeding defined thresholds in multiple hydrological response variables including groundwater drawdown and eight streamflow metrics (only reductions in annual streamflow are reported here). The zone of potential hydrological change in the Gloucester subregion covers 250 km2 and includes 242 km of stream network. This represents 52% of the area and 70% of the stream length assessed. Groundwater drawdown exceeding 0.2 m in the near surface aquifer due to additional coal resource development is very likely (>95% chance) for an area of 20 km2 but is very unlikely (<5% chance) to exceed an area of 100 km2. Although 242 km of streams are identified as being potentially impacted, changes in streamflow are small, with a little over 5% reduction in annual flow in some streams close to the coal mines, and reductions in annual flow in the major rivers not exceeding 1 - 5%.

2020 ◽  
Vol 9 (2) ◽  
pp. 69 ◽  
Author(s):  
Daniela Piacentini ◽  
Francesco Troiani ◽  
Tommaso Servizi ◽  
Olivia Nesci ◽  
Francesco Veneri

The stream length-gradient (SL) index is widely used in geomorphological studies aimed at detecting knickzones, which are extensive along-stream deviations from the typical concave-up shape assumed for stream longitudinal profiles at steady-state conditions. In particular, SL was practical for identifying anomalous gradients along bedrock stream channels in mountainous catchments. This work presents the GIS toolbox SLiX designed to extract values of the SL index, starting from Digital Elevation Models (DEMs). SLiX is also suitable for the spatial analysis of the SL values, allowing for the identification of landscape portions where anomalous high values of SL occur and, consequently, those catchment sectors where stream channels show peaks in the erosional dynamic. The SLiX main outputs are (i) point shapefiles containing, among stream channels attributes, the extracted values of SL along the stream network analyzed, and (ii) SL anomaly maps in GeoTIFF format, computed through the Hotspot and Cluster Analysis (HCA), that permit the detection of the catchment sectors where the major SL anomalies occur and consequently the principal knickzones. The application of the proposed tool within an experimental catchment located in the Northern Apennines of Italy demonstrated the proper functionality and the potential of its use for different geomorphological and environmental studies. The accurate and cost-effective detection of anomalous changes in stream gradient ensured by SLiX is of great interest and can be useful for studies aimed at unravelling the Earth processes responsible of their formation (e.g., active hillslope processes, such as landslides directly interacting with the streambed, presence of geological structures, and meander cut-off). The applications of SLiX have clear implications for preliminary analyses, at a regional scale in different morpho-climatic contexts, for the hydrological management of river basins and/or to prevent geological hazards related to the fluvial erosional dynamics.


2017 ◽  
Author(s):  
Jens Heinke ◽  
Christoph Müller ◽  
Mats Lannerstad ◽  
Dieter Gerten ◽  
Wolfgang Lucht

Abstract. Population growth will in many regions increase the pressure on water resources and likely increase the number of people affected by water scarcity. In parallel, global warming causes hydrological changes which regionally also impact human water supply. This study estimates the increase in pressure on global water resources due to population growth and adverse hydrological effects at different levels of global mean temperature rise above pre-industrial level (∆Tglob), including reduced mean water availability, growing prevalence of hydrological droughts, and increased frequency of flooding hazards. The study analyses the results in the context of success and failure of implementing the Paris Agreement, and evaluates how climate mitigation can reduce the future number of people affected by severe hydrological change, assessed for the population as a whole, as well as for vulnerable population groups already projected to experience water scarcity in the absence of climate change. The results show that without climate mitigation efforts, in 2100 more than 5.1 billion people in the SSP2 population scenario would more likely than not be affected by severe hydrological change, and about 1.9 billion of them would already be affected by water scarcity in the absence of climate change. Limiting warming to 2 °C or 1.5 °C by a successful implementation of the Paris Agreement would strongly limit the number of people affected by severe hydrological changes and water scarcity to 274 million or 104 million, respectively. At the regional scale, substantial water related risks remain at 2 °C, with more than 10 % of the population affected in Latin America and the Middle East and North Africa region. Constraining ∆Tglob to 1.5 °C would limit this share to about 5 % in these regions.


2015 ◽  
Vol 15 (19) ◽  
pp. 10983-10998 ◽  
Author(s):  
J. C. Péré ◽  
B. Bessagnet ◽  
V. Pont ◽  
M. Mallet ◽  
F. Minvielle

Abstract. In this work, impact of aerosol solar extinction on the photochemistry over eastern Europe during the 2010 wildfires episode is discussed for the period from 5 to 12 August 2010, which coincides to the peak of fire activity. The methodology is based on an online coupling between the chemistry-transport model CHIMERE (extended by an aerosol optical module) and the radiative transfer code TUV. Results of simulations indicate an important influence of the aerosol solar extinction, in terms of intensity and spatial extent, with a reduction of the photolysis rates of NO2 and O3 up to 50 % (in daytime average) along the aerosol plume transport. At a regional scale, these changes in photolysis rates lead to a 3–15 % increase in the NO2 daytime concentration and to an ozone reduction near the surface of 1–12 %. The ozone reduction is shown to occur over the entire boundary layer, where aerosols are located. Also, the total aerosol mass concentration (PM10) is shown to be decreased by 1–2 %, on average during the studied period, caused by a reduced formation of secondary aerosols such as sulfates and secondary organics (4–10 %) when aerosol impact on photolysis rates is included. In terms of model performance, comparisons of simulations with air quality measurements at Moscow indicate that an explicit representation of aerosols interaction with photolysis rates tend to improve the estimation of the near-surface concentration of ozone and nitrogen dioxide as well as the formation of inorganic aerosol species such as ammonium, nitrates and sulfates.


2021 ◽  
Author(s):  
Richard Mommertz ◽  
Lars Konen ◽  
Martin Schodlok

&lt;p&gt;Soil is one of the world&amp;#8217;s most important natural resources for human livelihood as it provides food and clean water. Therefore, its preservation is of huge importance. For this purpose, a proficient regional database on soil properties is needed. The project &amp;#8220;ReCharBo&amp;#8221; (Regional Characterisation of Soil Properties) has the objective to combine remote sensing, geophysical and pedological methods to determine soil characteristics on a regional scale. Its aim is to characterise soils non-invasive, time and cost efficient and with a minimal number of soil samples to calibrate the measurements. Konen et al. (2021) give detailed information on the research concept and first field results in a presentation in the session &amp;#8220;SSS10.3 Digital Soil Mapping and Assessment&amp;#8221;. Hyperspectral remote sensing is a powerful and well known technique to characterise near surface soil properties. Depending on the sensor technology and the data quality, a wide variety of soil properties can be derived with remotely sensed data (Chabrillat et al. 2019, Stenberg et al. 2010). The project aims to investigate the effects of up and downscaling, namely which detail of information is preserved on a regional scale and how a change in scales affects the analysis algorithms and the possibility to retrieve valid soil parameter information. Thus, e.g. laboratory and field spectroscopy are applied to gain information of samples and fieldspots, respectively. Various UAV-based sensors, e.g. thermal &amp; hyperspectral sensors, are applied to study soil properties of arable land in different study areas at field scale. Finally, airborne (helicopter) hyperspectral data will cover the regional scale. Additionally forthcoming spaceborne hyperspectral satellite data (e.g. Prisma, EnMAP, Sentinel-CHIME) are a promising outlook to gain detailed regional soil information. In this context it will be discussed how the multisensor data acquisition is best managed to optimise soil parameter retrieval. Sensor specific properties regarding time and date of acquisition as well as weather/atmospheric conditions are outlined. The presentation addresses and discusses the impact of a multisensor and multiscale remote sensing data collection regarding the results on soil parameter retrieval.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;References&lt;/p&gt;&lt;p&gt;Chabrillat, S., Ben-Dor, E. Cierniewski, J., Gomez, C., Schmid, T. &amp; van Wesemael, B. (2019): Imaging Spectroscopy for Soil Mapping and Monitoring. Surveys in Geophysics 40:361&amp;#8211;399. https://doi.org/10.1007/s10712-019-09524-0&lt;/p&gt;&lt;p&gt;Stenberg, B., Viscarra Rossel, R. A., Mounem Mouazen, A. &amp; Wetterlind, J. (2010): Visible and Near Infrared Spectroscopy in Soil Science. In: Donald L. Sparks (editor): Advances in Agronomy. Vol. 107. Academic Press:163-215. http://dx.doi.org/10.1016/S0065-2113(10)07005-7&lt;/p&gt;


2021 ◽  
Author(s):  
Dario Ruggiu ◽  
Salvatore Urru ◽  
Roberto Deidda ◽  
Francesco Viola

&lt;p&gt;The assessment of climate change and land use modifications effects on hydrological cycle is challenging. We propose an approach based on Budyko theory to investigate the relative importance of natural and anthropogenic drivers on water resources availability. As an example of application, the proposed approach is implemented in the island of Sardinia (Italy), which is affected by important processes of both climate and land use modifications. In details, the proposed methodology assumes the Fu&amp;#8217;s equation to describe the mechanisms of water partitioning at regional scale and uses the probability distributions of annual runoff (Q) in a closed form. The latter is parametrized by considering simple long-term climatic info (namely first orders statistics of annual rainfall and potential evapotranspiration) and land use properties of basins.&lt;/p&gt;&lt;p&gt;In order to investigate the possible near future water availability of Sardinia, several climate and land use scenarios have been considered, referring to 2006-2050 and 2051-2100 periods. Climate scenarios have been generated considering fourteen bias corrected outputs of climatic models from EUROCORDEX&amp;#8217;s project (RCP 8.5), while three land use scenarios have been created following the last century tendencies.&lt;/p&gt;&lt;p&gt;Results show that the distribution of annual runoff in Sardinia could be significantly affected by both climate and land use change. The near future distribution of Q generally displayed a decrease in mean and variance compared to the baseline. &amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;The reduction of&amp;#160; Q is more critical moving from 2006-2050 to 2051-2100 period, according with climatic trends, namely due to the reduction of annual rainfall and the increase of potential evapotranspiration. The effect of LU change on Q distribution is weaker than the climatic one, but not negligible.&lt;/p&gt;


2018 ◽  
Vol 10 (10) ◽  
pp. 3428 ◽  
Author(s):  
Mengmeng Hao ◽  
Jingying Fu ◽  
Dong Jiang ◽  
Xiaoxi Yan ◽  
Shuai Chen ◽  
...  

Bioenergy is expected to play a key role in achieving a future sustainable energy system. Sweet sorghum-based fuel ethanol, one of the most promising bioenergy sources in China, has been receiving considerable attention. However, the conflict between sweet sorghum development and traditional water use has not been fully considered. The article presents an integrated method for evaluating water stress from sweet sorghum-based fuel ethanol in China. The region for developing sweet sorghum was identified from the perspective of sustainable development of water resources. First, the spatial distribution of the water demand of sweet sorghum-based fuel ethanol was generated with a Decision Support System for Agrotechnology Transfer (DSSAT) model coupled with Geo-Information System (GIS). Subsequently, the surplus of water resources at the provincial scale and precipitation at the pixel scale were considered during the growth period of sweet sorghum, and the potential conflicts between the supply and demand of water resources were analyzed at regional scale monthly. Finally, the development level of sweet sorghum-based fuel ethanol was determined. The results showed that if the pressure of water consumption of sweet sorghum on regional water resources was taken into account, about 23% of the original marginal land was not suitable for development of sweet sorghum-based fuel ethanol, mainly distributed in Beijing, Hebei, Ningxia, Shandong, Shanxi, Shaanxi, and Tianjin. In future energy planning, the water demand of energy plants must be fully considered to ensure its sustainable development.


2021 ◽  
Author(s):  
Francesca Zanetti ◽  
Nicola Durighetto ◽  
Filippo Vingiani ◽  
Gianluca Botter

&lt;p&gt;Headwater streams are important for their hydrological function and for their significant contribution to the riverine ecosystems. Nevertheless their study has always been challenging because of the ephemeral and intermittent nature of those streams. Maps representing the active part of the river network are usually drawn after field surveys performed under different hydrologic conditions, which enable an objective evaluation of the temporal changes in the length of the active network. This method is useful to describe seasonal variations of the stream length, but has significant limitations when it comes to the description of event-based changes of the flowing network, provided that visual inspections of entire catchments are highly time-consuming. In this work, electrical resistance (ER) sensors were used to analyze event-based active network dynamics along some of the tributaries of an Alpine creek in northern Italy. Current intensity values were collected every 5 minutes by the sensors and a threshold electrical signal was identified to distinguish between wet and dry status of the reaches where the probes were placed. A statistical analysis revealed a good correlation among the mean current intensity recorded, the exceedance probability of the threshold and the persistency of the nodes. Data collected by the sensors were also interpolated in space along the network to obtain a sequence of maps of the active and dry parts of the stream network. From each map the wet length (L) of the watercourse was derived and linked to the corresponding discharge (Q) at the outlet of the catchment. Small and intense precipitation events had different effects on the variations of Q and L: the network length was found to be more sensitive than discharge to small precipitation inputs; relevant stream flow variations were instead observed only during significant events that originated the largest changes in the active network length.&amp;#160; This heterogeneous behaviour negatively affected the quality of the fitting of empirical discharges vs. wet length data through a power law model. Water presence sensors provide an opportunity to study in depth the spatiotemporal dynamics of the active length of intermittent streams and link such dynamics to the relevant hydrological drivers.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document