Influences of natural and anthropogenic processes on the groundwater quality in the Dagujia River Basin in Yantai, China

2019 ◽  
Vol 69 (2) ◽  
pp. 184-196 ◽  
Author(s):  
Henghua Zhu ◽  
Jianwei Zhou ◽  
Tingting Song ◽  
Haibo Feng ◽  
Zhizheng Liu ◽  
...  

Abstract Groundwater plays an important role in water supply and economic development for Yantai city, China. However, the groundwater quality has degraded due to the increase and expansion of agricultural and industrial development. It is urgent to acquire groundwater characteristics and distinguish impacts of natural factors and anthropogenic activities on the groundwater quality. Forty-six groundwater samples collected from different wells showed a great variation of chemical components across the study area. Most wells with higher total dissolved solids, total hardness, K+, Na+, Ca2+, Mg2+, Cl− and SO42− concentrations were located relatively close to the coastal zone. The factor analysis (FA) and hierarchical cluster analysis results displayed that seawater intrusion was the primary mechanism controlling the groundwater quality in the coastal areas. A three-factor model was proposed based on the FA and explained over 85% of the total groundwater quality variation: Factor 1, the seawater intrusion; Factor 2, the water–rock interaction and Factor 3 (NO3−), the human activities. Furthermore, the geographical maps of the factor scores clearly described the spatial distributions of wells affected by natural processes or human activities. The study indicated that both natural processes and human activities are the major factors affecting the chemical compositions of groundwater.

2018 ◽  
Vol 10 (12) ◽  
pp. 4507 ◽  
Author(s):  
Yanna Yang ◽  
Wenlai Xu ◽  
Jinyao Chen ◽  
Qiang Chen ◽  
Zhicheng Pan

Methods for groundwater quality and pollution assessment are applied extensively, but it is difficult to determine a unified evaluation model. On the basis of hydrogeochemical characteristics analysis in 2016 compared with that in 1995, the five-element connection number SPA (set pair analysis) method was applied to evaluate the groundwater quality of the Gaoqiao diluvial fan under the influence of hydrogeological conditions and human activities along the flow path in our work. Descriptive statistics methods, Piper diagram, and a Schoeller diagram were also used to analyze the hydrochemical characteristics of groundwater such as chemical components, total dissolved solid, and total hardness. The change of the typical pollutant of fluorine was analyzed to evaluate the groundwater quality under the influence of human activities. The results showed that the groundwater quality in the study area was more in rank П. The basic hydrochemical types of shallow groundwater were HCO3-Ca·Mg and HCO3·SO4-Ca·Mg. The influencing factors of the hydrochemical component of groundwater were identified in the Gaoqiao diluvial fan. The quality of groundwater changed slightly from the top to the edge of the fan due to the water–rock interaction except for in Yucun and Hucun influenced by human activities. The assessment result can provide a scientific basis for the pollution prevention and changing process control of the groundwater in the hydrogeological unit of the Gaoqiao diluvial fan.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1321 ◽  
Author(s):  
Muhammad Aleem ◽  
Cao Shun ◽  
Chao Li ◽  
Arslan Aslam ◽  
Wu Yang ◽  
...  

The industrial augmentation and unguided anthropogenic activities contaminate water sources in most parts of the world especially in developing countries like Pakistan. High concentration of pollutants in groundwater affects human, soil, and crop health badly. The present study was conducted to investigate groundwater quality for drinking and irrigation purposes in an industrial zone of Pakistan. A GIS tool was used to investigate the spatial distribution of different physico-chemical parameters. In this study, the average results exceeding World Health Organization (WHO) and National Environmental Quality Standards (NEQS) were found for pH 7.84, total dissolved solids (TDS) 1492 mg/L, phosphate 0.51 mg/L, dissolved oxygen (DO) 9.92% saturation, F-coli 6.48 colonies/100 mL, Na+ 366 mg/L, HCO3− 771 mg/L, sulfate 251 mg/L, chlorides 427 mg/L, total hardness (as CaCO3) 292 mg/L, electrical conductivity (EC) 2408 μS/cm, iron (Fe) 0.48 mg/L, chrome (Cr) 0.50 mg/L, arsenic (As) 0.04 mg/L, total phosphorus (TP) 0.17 mg/L, sodium adsorption ratio (SAR) 9.76 (in meq/L), residual sodium carbonate (RSC) 9.28 meq/L, % ion balance 14.4 (in meq/L), percentage sodium ion (% Na+) concentration 58.9 meq/L, and water quality index (WQI) 69.0. The trend of cations and anions were (in meq/L) Na > Mg > Ca > K and HCO3 > Cl > CO3 > SO4 respectively. Although the results of the present study showed poor conditions of the groundwater for drinking as WQI but and irrigation purposes as SAR, it needs to improve some more conditions for the provision of safe drinking water and irrigation water quality.


2019 ◽  
Vol 98 ◽  
pp. 09031
Author(s):  
Hongyang Wei ◽  
Xiujuan Liang

The unreasonable development and utilization of groundwater in Dehui City, China, has resulted in poor groundwater quality conditions. Based on the collection of a large amount of groundwater chemical data and hydrogeological data collected by Dehui City from 1992 to 2015, this paper uses hydrogeological analysis, graphic and other methods and ArcGIS toolbox to analyze the groundwater quality of this City. The study shows that the concentration of groundwater chemical components in the vicinity of the Songhua River is decreasing with time, and the concentration of groundwater chemical components in other regions is increasing with time. The increase of chemical concentrations are affected by human activities and water-rock interaction. The decrease of groundwater chemical concentration in Songhua River area is caused by the mixing between dilute river water and groundwater.


Water ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2247 ◽  
Author(s):  
Wang ◽  
Mei ◽  
Yu ◽  
Li ◽  
Meng ◽  
...  

Many irrigated plains in arid and semi-arid regions have groundwater quality issues due to both intensive human activity and natural processes. Comprehensive studies are urgently needed to explore hydrogeochemical evolutions, investigate possible pollution sources, and understand the controls on groundwater compositions in such regions. Here, we combine geostatistical techniques and hydrogeochemical assessments to characterize groundwater quality over time in the Yinchuan Plain (a typical irrigated plain in China), using 12 physicochemical variables derived from sampling in 600 and 602 wells in 2004 and 2014, respectively. Our results show that groundwater-rock interactions and evaporation are the key natural factors controlling groundwater compositions. Hydrogeochemical water types in both 2004 and 2014 were Ca-HCO3, Na-Cl, and mixed Ca·Mg-Cl. Along with the hydrogeochemical compositions, we used ionic ratios and the saturation index to delineate mineral solution reactions and weathering processes. Dissolution of gypsum, halite, fluorite, and mirabilite, along with silicate weathering and cation exchange, were identified in the study area. Our results indicated rising ion concentrations in groundwater, which could be the result of anthropogenic influences. Increasing total hardness and nitrates over the study period were most likely caused by agricultural activity and the discharge of waste water from human residential areas.


2019 ◽  
Author(s):  
Ronny ◽  
Erlani ◽  
Jasman

Groundwater quality in each region is not always the same, this influenced by climate factors, lithology, time, human activities. The purpose of the research that conducted was to see the relationship among the depth of groundwater wells in two different study locations on the concentration of iron (Fe) and Chloride (Cl) levels in each sample. This research located in Mattiro Baji Village, Pangkep Regency, South Sulawesi and Sindulang Satu Urban Village, Manado City, North Sulawesi. The research sample amounted to 18 in the form of bottles of groundwater well samples which evenly taken at the study site. TDS Meter is used to quantity iron (Fe) concentration, and Chlorine Meter is chloride (Cl) levels in samples with mg/L. The outcomes of the study showed that there was no noteworthy relationship between the depth of groundwater wells and the levels of concentration of iron (Fe) and Chloride (Cl). Conditions that are still not contaminated by changes caused by the environment, industrial waste and seawater intrusion.


2015 ◽  
Vol 1 (3) ◽  
pp. 270-278
Author(s):  
C.M. Kanchana N. K. Chandrasekara ◽  
K. D. N. Weerasinghe ◽  
Sumith Pathirana ◽  
Ranjana U. K. Piyadasa

Author(s):  
Nur Fatihah Mohamad Zainol ◽  
Azim Haziq Zainuddin ◽  
Ley Juen Looi ◽  
Ahmad Zaharin Aris ◽  
Noorain Mohd Isa ◽  
...  

Rapid urbanization and industrial development in the Langat Basin has disturbed the groundwater quality. The populations’ reliance on groundwater sources may induce possible risks to human health such as cancer and endocrine dysfunction. This study aims to determine the groundwater quality of an urbanized basin through 24 studied hydrochemical parameters from 45 groundwater samples obtained from 15 different sampling stations by employing integrated multivariate analysis. The abundance of the major ions was in the following order: bicarbonate (HCO3−) > chloride (Cl−) > sodium (Na+) > sulphate (SO42−) > calcium (Ca2+) > potassium (K+) > magnesium (Mg2+). Heavy metal dominance was in the following order: Fe > Mn > Zn > As > Hg > Pb > Ni > Cu > Cd > Se > Sr. Classification of the groundwater facies indicated that the studied groundwater belongs to the Na-Cl with saline water type and Na-HCO3 with mix water type characteristics. The saline water type characteristics are derived from agricultural activities, while the mixed water types occur from water–rock interaction. Multivariate analysis performance suggests that industrial, agricultural, and weathering activities have contributed to groundwater contamination. The study will help in the understanding of the groundwater quality issue and serve as a reference for other basins with similar characteristics.


2019 ◽  
Vol 41 (1) ◽  
pp. 37-46
Author(s):  
Megersa Olumana Dinka

Abstract Wonji Shoa Sugar Estate (WSSE), located in the flood plain of the Awash River (Ethiopia), has been under long-term (>60 years) irrigation, industrial activities and agro-chemical usage. In this study, the hydrochemical properties of groundwater bodies available at WSSE have been characterized for quality compositions. Water samples were collected from groundwater monitoring piezometers distributed in the sugarcane plantation and then analysed for physico-chemical quality parameters (pH, EC, major cations and anions) following standard procedures. Other chemical indices (e.g., total dissolved solids (TDS), total hardness (TH), magnesium absorption ratio (MAR), base exchange (r1), meteoric genesis (r2)) were derived from the measured water quality parameters. The compositional variability and groundwater classification has been presented using the Box and Piper plots. The potential sources of minerals were suggested for each of the considered water sources based on their quality characteristics. Both trilinear Piper plot and meteoric genesis index revealed that groundwater of the area is shallow meteoric water percolation type with a changing of hydrochemical facies and mixing trend. Groundwater of the area, is group 1 (Ca-Mg-HCO3) type, with no dominant cations and HCO3 are the dominant anions. Overall, the study result elucidates that the chemical composition of GW of the area showed spatial variability depending upon the variations in hydrochemical inputs from natural processes and/or anthropogenic activities within the region. The local anthropogenic processes could be discharges from sugar factory, domestic sewage and agricultural activities.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012188
Author(s):  
K Arumugam ◽  
T Karthika ◽  
M Kartic Kumar ◽  
R K. Sangeetha ◽  
T Anitha ◽  
...  

Abstract The increase in inhabitants and development of advantageous economic behavior undoubtedly leads to escalating water demand for different uses. Improper planning, mismanagement, inappropriate standards and procedure for discharging the industrial effluents are prime causes for deterioration of groundwater quality in industrial zone. The study vicinity is exaggerated by subsurface water quality problem. To evaluate the water quality of aquifer, sixty two samples were collected, analyzed and the results of the data are evaluated according to the standards. Hydro-chemical facies, rock-water process, factor analysis, correlation matrix studies were carried out for assessing the associated hydro-chemical process operating in the progress of salinity concentration. The analysis reveals that water belongs to highly brackish type. In this study zone, groundwater is influenced by water-rock interaction and evaporation process. Factor analysis shows that the groundwater is greatly deteriorated by anthropogenic activities. Based on hyrochemical study, the subsurface water is not fit for domestic purposes.


2021 ◽  
Author(s):  
Louis Boansi Okofo ◽  
Nana Akyerefi Anderson ◽  
Kenneth Bedu-Addo ◽  
Ekua Afrakoma Armoo

Abstract The Birimian and Tarkwaian aquifer systems are the main sources of water supply for the Bosome Freho District and Bekwai Municipality inhabitants in the Ashanti region of Ghana. A hydrogeochemical assessment was carried out to ascertain the natural baseline chemistry of the groundwaters and the factors influencing groundwater chemistry in these two areas. A multivariate statistical tool consisting of principal component analysis (PCA) and hierarchical cluster analysis (HCA) together with hydrochemical graphical plots was applied on 64 groundwater samples. The Q–mode HCA results were used to explain the groundwater quality flow paths where three spatial groundwater zones and water types were delineated. The first type consists of Ca–Mg–HCO3 freshwater (recharge zone), which transitions into Ca–Na–HCO3 or Na–Ca–HCO3 mixed waters (intermediate zone) and finally evolve to the third type of Na–Ca–Mg–HCO3–Cl water (discharge zone). The study also reveals that the natural process influencing water chemistry is groundwater–rock interaction from carbonate and silicate weathering/dissolution, aided by carbonic acid from precipitation and releases concentration of Na+, Ca2+, Mg2+ and HCO3- into the groundwaters significantly. The chloro-alkaline indices also reveal cation exchange as the principal natural factors that control groundwater chemistry in the area. Anthropogenic activities have little influence on groundwater chemistry. The quality of groundwater in the Bosome Freho District and Bekwai Municipality are suitable for irrigational use and drinking water consumption. The results obtained so far will contribute to research paucity in the study area and serve as a guide for decision-makers for improved water resources management.


Sign in / Sign up

Export Citation Format

Share Document