scholarly journals Time evolution of groundwater quality in Dehui City

2019 ◽  
Vol 98 ◽  
pp. 09031
Author(s):  
Hongyang Wei ◽  
Xiujuan Liang

The unreasonable development and utilization of groundwater in Dehui City, China, has resulted in poor groundwater quality conditions. Based on the collection of a large amount of groundwater chemical data and hydrogeological data collected by Dehui City from 1992 to 2015, this paper uses hydrogeological analysis, graphic and other methods and ArcGIS toolbox to analyze the groundwater quality of this City. The study shows that the concentration of groundwater chemical components in the vicinity of the Songhua River is decreasing with time, and the concentration of groundwater chemical components in other regions is increasing with time. The increase of chemical concentrations are affected by human activities and water-rock interaction. The decrease of groundwater chemical concentration in Songhua River area is caused by the mixing between dilute river water and groundwater.

2018 ◽  
Vol 10 (12) ◽  
pp. 4507 ◽  
Author(s):  
Yanna Yang ◽  
Wenlai Xu ◽  
Jinyao Chen ◽  
Qiang Chen ◽  
Zhicheng Pan

Methods for groundwater quality and pollution assessment are applied extensively, but it is difficult to determine a unified evaluation model. On the basis of hydrogeochemical characteristics analysis in 2016 compared with that in 1995, the five-element connection number SPA (set pair analysis) method was applied to evaluate the groundwater quality of the Gaoqiao diluvial fan under the influence of hydrogeological conditions and human activities along the flow path in our work. Descriptive statistics methods, Piper diagram, and a Schoeller diagram were also used to analyze the hydrochemical characteristics of groundwater such as chemical components, total dissolved solid, and total hardness. The change of the typical pollutant of fluorine was analyzed to evaluate the groundwater quality under the influence of human activities. The results showed that the groundwater quality in the study area was more in rank П. The basic hydrochemical types of shallow groundwater were HCO3-Ca·Mg and HCO3·SO4-Ca·Mg. The influencing factors of the hydrochemical component of groundwater were identified in the Gaoqiao diluvial fan. The quality of groundwater changed slightly from the top to the edge of the fan due to the water–rock interaction except for in Yucun and Hucun influenced by human activities. The assessment result can provide a scientific basis for the pollution prevention and changing process control of the groundwater in the hydrogeological unit of the Gaoqiao diluvial fan.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2704 ◽  
Author(s):  
Jianguo Feng ◽  
Hao Sun ◽  
Minghao He ◽  
Zongjun Gao ◽  
Jiutan Liu ◽  
...  

This study aimed to determine the hydrochemical characteristics and hydrogeochemical processes of shallow groundwater in the Jinta Basin, northwest China, and to evaluate the suitability of groundwater quality for drinking water and agricultural irrigation. A systematic hydrogeological survey was conducted in the study area from May 2017 to October 2018, during which 123 representative samples of groundwater were selected for analysis of chemical parameters and determination of the water quality index. The results showed that the pH of groundwater in the study area was weakly alkaline and ranged between 7.21–8.93. Dominant cations were Mg2+ and Na+ and the dominant anion was SO42−. Along the groundwater flow from the southwest to northeast, the dominant groundwater chemistry type in the recharge area was Mg-HCO3·SO4. After the transition of the groundwater types in the runoff area to Mg-SO4·HCO3 and Mg·Na-SO4, the groundwater type in the discharge area evolved into Na·Mg-SO4·Cl. The major factors driving the evolution of groundwater chemical types in the Jinta Basin were found to be rock weathering, evaporation and precipitation. The chemical components of groundwater mainly originated from the dissolution of silicate rock and evaporative concentration of salt under water-rock interaction, whereas the dissolution of carbonate had little influence. The quality of drinking water was divided into five groups, and 39.84% of samples fell within the high and good quality groups. The quality of agricultural irrigation water was divided into different grades according to different methods.


2019 ◽  
Vol 69 (2) ◽  
pp. 184-196 ◽  
Author(s):  
Henghua Zhu ◽  
Jianwei Zhou ◽  
Tingting Song ◽  
Haibo Feng ◽  
Zhizheng Liu ◽  
...  

Abstract Groundwater plays an important role in water supply and economic development for Yantai city, China. However, the groundwater quality has degraded due to the increase and expansion of agricultural and industrial development. It is urgent to acquire groundwater characteristics and distinguish impacts of natural factors and anthropogenic activities on the groundwater quality. Forty-six groundwater samples collected from different wells showed a great variation of chemical components across the study area. Most wells with higher total dissolved solids, total hardness, K+, Na+, Ca2+, Mg2+, Cl− and SO42− concentrations were located relatively close to the coastal zone. The factor analysis (FA) and hierarchical cluster analysis results displayed that seawater intrusion was the primary mechanism controlling the groundwater quality in the coastal areas. A three-factor model was proposed based on the FA and explained over 85% of the total groundwater quality variation: Factor 1, the seawater intrusion; Factor 2, the water–rock interaction and Factor 3 (NO3−), the human activities. Furthermore, the geographical maps of the factor scores clearly described the spatial distributions of wells affected by natural processes or human activities. The study indicated that both natural processes and human activities are the major factors affecting the chemical compositions of groundwater.


Author(s):  
Nnenesi A. Kgabi ◽  
Eliot Atekwana ◽  
Johanna Ithindi ◽  
Martha Uugwanga ◽  
Kay Knoeller ◽  
...  

Abstract. We assessed environmental tracers in groundwater in two contrasting basins in Namibia; the Kuiseb Basin, which is a predominantly dry area and the Cuvelai-Etosha Basin, which is prone to alternating floods and droughts. We aimed to determine why the quality of groundwater was different in these two basins which occur in an arid environment. We analysed groundwater and surface water for the stable isotope ratios of hydrogen (δ2H) and oxygen (δ18O) by cavity ring-down spectroscopy and metals by inductively coupled plasma mass spectrometry. The δ2H and δ18O of surface water in the Cuvelai-Etosha Basin plot on an evaporation trend below the global meteoric water line (GMWL) and the local meteoric water line (LMWL). The δ2H and δ18O of some groundwater samples in the Cuvelai-Etosha Basin also plot on the evaporation trend, indicating recharge by evaporated rain or evaporated surface water. In contrast, the δ2H and δ18O of groundwater samples in the Kuiseb Basin plot mostly along the GMWL and the LMWL, indicating direct recharge from unevaporated rain or unevaporated surface water. Fifty percent of groundwater samples in the Cuvelai-Etosha Basin was potable (salinity < 1 ppt) compared to 79 % in the Kuiseb Basin. The high salinity in the groundwater of the Cuvelai-Etosha Basin does not appear to be caused by evaporation of water (evapo-concentration) on surface prior to groundwater recharge, but rather by the weathering of the Kalahari sediments. The low salinity in the Kuiseb Basin derives from rapid recharge of groundwater by unevaporated rain and limited weathering of the crystalline rocks. The order of abundance of cations in the Kuiseb Basin is Na > K > Ca > Mg vs. Na > Mg > Ca > K for the Cuvelai-Etosha Basin. For metals in the Kuiseb Basin the order of abundance is Fe > Al > V > As > Zn vs. Al > Fe > V> As > Zn for the Cuvelai-Etosha Basin. The relative abundance of cations and metals are attributed to the differences in geology of the basins and the extent of water-rock interaction. Our results show that the quality of groundwater in Cuvelai-Etosha Basin and Kuiseb Basin which vary in the extent of aridity, is controlled by the extent of water-rock interaction at the surface and in the groundwater aquifer.


KURVATEK ◽  
2017 ◽  
Vol 1 (2) ◽  
pp. 13-19
Author(s):  
T. Listiyani R.A.

The demand of clean water as well as good quality of drinking water in research area puss the author for knowing about groundwater quality in research area. The aim of the research is to understand the hydrochemistry of groundwater in study area, includinghydrochemical processes and the influence of minerals or rocks to groundwater quality. The methods in the research are groundwater and rocks sampling, petrography and also groundwater’s chemical analysis.Result of this study shows that groundwater quality in Geyer area is influenced by minerals and rocks in that place with dissolution and ions exchange would be important processes. Minerals which composed rocks are dominated by calcareous and clay minerals. These minerals supply chemical components such as Ca2+, Mg2+, Na+, Cl-, carbonate and bicarbonate to groundwater.  Key words: hydrochemistry, groundwater, hydrochemical process, major ion.


2017 ◽  
Vol 21 (12) ◽  
pp. 6091-6116 ◽  
Author(s):  
Bernd Kohlhepp ◽  
Robert Lehmann ◽  
Paul Seeber ◽  
Kirsten Küsel ◽  
Susan E. Trumbore ◽  
...  

Abstract. The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface–subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate–siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata, valley incision/outcrops) and related geostructural links (enhanced recharge areas, karst phenomena) control the role of surface factors (input quality and locations) vs. subsurface factors (water–rock interaction, cross-formational flow) for groundwater quality in the multi-layered aquifer system. Our investigation reveals general properties of alternating sequences in hillslope terrains that are prone to forming multi-layered aquifer systems. This synoptic analysis is fundamental and indispensable for a mechanistic understanding of ecological functioning, sustainable resource management and protection.


2021 ◽  
Vol 54 (1F) ◽  
pp. 20-32
Author(s):  
Ayad Ali Faris Beg ◽  
Salih M. Awadh ◽  
Mohammed Bahjat Thamer ◽  
Ahmed H. Al-Sulttani

Groundwater is an important resource that can be used for various purposes. Various factors can change the chemistry of the GW, such as the chemical composition of an aquifer as well as the leaching of human waste into groundwater. The study area is a barren land covered by some sabkhas, in addition to some agricultural fields. The study aims to assess groundwater quality for drinking purposes using the Water Quality Index. The groundwater is chemically heterogeneous and has a wide quality range from very poor to excellent. Evaporation appears to be the controlling factor among the other shallow waters, while relatively deep water is related to rock-soil dominance. Rocks, land use and land cover have helped control the groundwater quality. Moreover, the heavy use of fertilizers, pesticides and irrigation, in addition to the presence of sabkhas, contributed to the deterioration of the groundwater quality. The water-rock interaction and evaporation are the dominant mechanisms that are controlling the groundwater quality in the study area.


2021 ◽  
Vol 9 (1) ◽  
pp. 35-43
Author(s):  
Mateusz Gorzelak ◽  
Dominika Dąbrowska

Abstract Municipal waste landfill is a potential, or actual, source of groundwater pollution. Even landfill with a ground containment system can generate leachate that will migrate to aquifers. In this context, it is important to monitor water and leachate and to rationally analyze the existing situation. The purpose of this article was to assess groundwater contamination in the region of the municipal landfill site in Poczesna (Southern Poland) using the Landfill Water Pollution Index (LWPI). Certain physicochemical parameters such as pH, electrical conductivity (EC), total organic carbon (TOC), polycyclic aromatic hydrocarbon (PAH), Cd, Pb, Zn, Cu, Cr, and Hg, were analyzed from samples from six piezometers in the years 2015-2019. The LWPI index values in the groundwater samples ranged from 0.97 to 3.11 (P<0.05). Indicator values that are within the range 2-5 reflect poor water quality with a high visible landfill impact, and those >5 suggest strongly polluted water with a very high landfill impact. The results of this study indicated that the quality of the groundwater in the area around the landfill was better in the case of the Jurassic aquifer compared to the Quaternary aquifer. The results provided by this index are very useful in the context of a quick assessment of groundwater quality. For the purposes of further risk analyses, it is important to consider other variables (chemical components) which can influence groundwater quality in the region of municipal landfill sites.


Sign in / Sign up

Export Citation Format

Share Document