scholarly journals Selection of optimal escape routes in a flood-prone area based on 2D hydrodynamic modelling

2018 ◽  
Vol 20 (6) ◽  
pp. 1310-1322
Author(s):  
Peng Guo ◽  
Junqiang Xia ◽  
Meirong Zhou ◽  
Roger A. Falconer ◽  
Qian Chen ◽  
...  

Abstract Optimizing escape routes during an extreme flood event is an effective way to mitigate casualties. In this study, a model for selecting optimal escape routes in a flood-prone area has been proposed, which includes a module for predicting the two-dimensional (2D) hydrodynamics and modules for assessing the hazard degree for evacuees, calculation of evacuation times and determination of different escape routes. In the module for determining escape routes, two evacuation schemes were used: scheme A to find optimal escape routes based on established road networks and scheme B to design a new optimal evacuation route. Extreme overbank floods occurred in the Lower Yellow River (LYR) in July 1958 (‘58.7’) and August 1982 (‘82.8’) and the proposed model was applied to select the optimal escape routes on a typical floodplain area of the LYR for these two floods. Model predictions indicated that: (i) the optimal escape routes for these two floods were the same for all three starting locations, and the optimized routes provided 3 h more time for evacuees to escape; and (ii) the time of evacuation would need to be earlier for the ‘58.7’ flood because of its larger amount of water volume and higher peak discharge.

Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2271
Author(s):  
Yoon Ha Lee ◽  
Hyun Il Kim ◽  
Kun Yeun Han ◽  
Won Hwa Hong

For flood risk assessment, it is necessary to quantify the uncertainty of spatiotemporal changes in floods by analyzing space and time simultaneously. This study designed and tested a methodology for the designation of evacuation routes that takes into account spatial and temporal inundation and tested the methodology by applying it to a flood-prone area of Seoul, Korea. For flood prediction, the non-linear auto-regressive with exogenous inputs neural network was utilized, and the geographic information system was utilized to classify evacuations by walking hazard level as well as to designate evacuation routes. The results of this study show that the artificial neural network can be used to shorten the flood prediction process. The results demonstrate that adaptability and safety have to be ensured in a flood by planning the evacuation route in a flexible manner based on the occurrence of, and change in, evacuation possibilities according to walking hazard regions.


2011 ◽  
Vol 214 ◽  
pp. 265-270
Author(s):  
Jun Yan ◽  
Biao Liang ◽  
Hui Cao ◽  
Yu Hua Zhang

Analyzed the sediment-transport process in high sediment-laden river, the new concept and calculating method for sediment-transport water volume are proposed. Based on field data of sediment and water volume in the Lower Yellow River from 1950 to 2000, the sediment-transport water volume and unit sediment-transport water volume in LYR are calculated. Meanwhile, relations between them and influencing factors are confirmed to calculate efficient sediment-transport water volume after construction of the Xiaolangdi reservoir.


2011 ◽  
Vol 403-408 ◽  
pp. 228-234
Author(s):  
Jun Yan ◽  
Biao Liang ◽  
Yu Hua Zhang ◽  
Hui Cao

Analyzed the sediment-transport process in high sediment-laden river, the new concept and calculating method for sediment-transport water volume are proposed. Based on field data of sediment and water volume in the Lower Yellow River from 1950 to 2000, the sediment-transport water volume and unit sediment-transport water volume in LYR are calculated. Meanwhile, relations between them and influencing factors are confirmed to calculate efficient sediment-transport water volume after construction of the Xiaolangdi reservoir. Results gained from these functions are consistent well with the facts of real water-sediment regulation in LYR.


2015 ◽  
Vol 15 (1) ◽  
pp. 39-50
Author(s):  
Anna Pasiecznik-Dominiak ◽  
Andrzej Tiukało ◽  
Grzegorz Dumieński

Abstract Flooding constitutes one of the main natural hazards in Poland, which causes enormous social, economic and environmental losses. The main causes of the occurrence of floods include intensive rainfall, rapid melting of snow and ice cover, as well as strong gusts of wind from the sea. Based on the resilience theory (resistance, elasticity), which constitutes an efficient tool for the description of the social-ecological system capability or components thereof to mitigate the effects of dangerous events, as well as the capability of reconstructing and adapting the system to new conditions, the authors have analysed the exposure of Polish lakes to flood risks with a probability of occurrence Q0.2%, Q1% and Q10%. In order to determine the level of exposure of lakes to the risk of flooding by flood waters, studies were conducted using the flood hazard and flood risk maps which were developed under the Project entitled “IT System of the Country’s Protection against Extreme Hazards”. The result of the efforts of the group of authors is the determination of the number of lakes, which are located in the flood risk area Q0.2%, Q1% and Q10%, including division into risk level groups (low, moderate and high). The results presented in the paper may constitute a contribution to further, more detailed studies concerning assessment of the vulnerability of Polish lakes located in the flood prone area.


2014 ◽  
Vol 2014 ◽  
pp. 1-12
Author(s):  
Yuanjian Wang ◽  
Xudong Fu ◽  
Guangqian Wang

We present a conceptual model for simulating the temporal adjustments in the banks of the Lower Yellow River (LYR). Basic conservation equations for mass, friction, and sediment transport capacity and the Exner equation were adopted to simulate the hydrodynamics underlying fluvial processes. The relationship between changing rates in bankfull width and depth, derived from quasiuniversal hydraulic geometries, was used as a closure for the hydrodynamic equations. On inputting the daily flow discharge and sediment load, the conceptual model successfully simulated the 30-year adjustments in the bankfull geometries of typical reaches of the LYR. The square of the correlating coefficient reached 0.74 for Huayuankou Station in the multiple-thread reach and exceeded 0.90 for Lijin Station in the meandering reach. This proposed model allows multiple dependent variables and the input of daily hydrological data for long-term simulations. This links the hydrodynamic and geomorphic processes in a fluvial river and has potential applicability to fluvial rivers undergoing significant adjustments.


2011 ◽  
Vol 225-226 ◽  
pp. 1345-1349
Author(s):  
Jun Yan ◽  
Biao Liang ◽  
Hui Cao ◽  
Yu Hua Zhang

Analyzed the sediment-transport process in the Lower Yellow river, the concept and normal calculating method for sediment-transport water volume are proposed. Based on field data of sediment and water volume in the Lower Yellow River from 1950 to 2000, the sediment-transport water volume and unit sediment-transport water volume in LYR are calculated. Furthermore, BP model is set up to calculate the high efficient sediment-transport water volume in the Lower Yellow River. Compared the results of BP model with normal calculating method, BP model is confirmed for calculating the high efficient sediment-transport water volume in the Lower Yellow river.


2015 ◽  
Vol 14 (8) ◽  
pp. 1933-1939
Author(s):  
Xianqi Zhang ◽  
Weiwei Han ◽  
Xiaofei Peng ◽  
Cundong Xu

2014 ◽  
Vol 10 ◽  
pp. 95-101
Author(s):  
A.S. Topolnikov

The paper presents the results of theoretical modeling of joined movement of pump rods and plunger pump and multiphase flow in a well for determination of dynamic loads on the polished rod of pumping unit. The specificity of the proposed model is the possibility of taking into account for complications in rod pump operating, such as leakage in valve steam, presence of gas and emulsion, incorrect fitting of plunger inside the cylinder pump. The satisfactory agreement of results of the model simulation with filed measurements are obtained.


2021 ◽  
Vol 13 (7) ◽  
pp. 3727
Author(s):  
Fatema Rahimi ◽  
Abolghasem Sadeghi-Niaraki ◽  
Mostafa Ghodousi ◽  
Soo-Mi Choi

During dangerous circumstances, knowledge about population distribution is essential for urban infrastructure architecture, policy-making, and urban planning with the best Spatial-temporal resolution. The spatial-temporal modeling of the population distribution of the case study was investigated in the present study. In this regard, the number of generated trips and absorbed trips using the taxis pick-up and drop-off location data was calculated first, and the census population was then allocated to each neighborhood. Finally, the Spatial-temporal distribution of the population was calculated using the developed model. In order to evaluate the model, a regression analysis between the census population and the predicted population for the time period between 21:00 to 23:00 was used. Based on the calculation of the number of generated and the absorbed trips, it showed a different spatial distribution for different hours in one day. The spatial pattern of the population distribution during the day was different from the population distribution during the night. The coefficient of determination of the regression analysis for the model (R2) was 0.9998, and the mean squared error was 10.78. The regression analysis showed that the model works well for the nighttime population at the neighborhood level, so the proposed model will be suitable for the day time population.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 338
Author(s):  
Chuanshun Zhi ◽  
Wengeng Cao ◽  
Zhen Wang ◽  
Zeyan Li

High–arsenic (As) groundwater poses a serious threat to human health. The upper and middle reaches of the Yellow River are well–known areas for the enrichment of high–arsenic groundwater. However, little is known about the distribution characteristics and formation mechanism of high-As groundwater in the lower reach of the Yellow River. There were 203 groundwater samples collected in different groundwater systems of the lower Yellow River for the exploration of its hydrogeochemical characteristics. Results showed that more than 20% of the samples have arsenic concentrations exceeding 10 μg/L. The high-As groundwater was mainly distributed in Late Pleistocene–Holocene aquifers, and the As concentrations in the paleochannels systems (C2 and C4) were significantly higher than that of the paleointerfluve system (C3) and modern Yellow River affected system (C5). The high-As groundwater is characterized by high Fe2+ and NH4+ and low Eh and NO3−, indicating that reductive dissolution of the As–bearing iron oxides is probably the main cause of As release. The arsenic concentrations strikingly showed an increasing tendency as the HCO3− proportion increases, suggesting that HCO3− competitive adsorption may facilitate As mobilization, too. In addition, a Gibbs diagram showed that the evaporation of groundwater could be another significant hydrogeochemical processes, except for the water–rock interaction in the study area. Different sources of aquifer medium and sedimentary structure may be the main reasons for the significant zonation of the As spatial distribution in the lower Yellow River.


Sign in / Sign up

Export Citation Format

Share Document