scholarly journals Management of Water Distribution Systems in PDA Condition with Isolation Valves

Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 672 ◽  
Author(s):  
Attilio Fiorini Morosini ◽  
Olga Caruso ◽  
Paolo Veltri

The correct management of Water Distribution Networks (WDNs) allows to obtain a reliable system. When a pipe failure occurs in a network and it is necessary to isolate a zone, it is possible that some nodes do not guarantee service for the users due to inadequate heads. In these conditions a Pressure Driven Analysis (PDA) is the correct approach to evaluate network behavior. This analysis is more appropriate than the Demand Driven Analysis (DDA) because it is known that the effective delivered flow at each node is influenced by the pressure value. In this case, it is important to identify a subset of isolation valves to limit disrupting services in the network. For a real network, additional valves must be added to existing ones. In this paper a new methodological analysis is proposed: it defines an objective function (OF) to provide a measure of the system correct functioning. The network analysis using the OF helps to choose the optimal number of additional valves to obtain an adequate system control. In emergency conditions, the OF takes into account the new network topology obtained excluding the zone where the broken pipe is located. OF values depend on the demand deficit caused by the head decrement in the network nodes for each pipe burst considered. The results obtained for a case study confirm the efficiency of the methodology.

2019 ◽  
Vol 22 (4) ◽  
pp. 681-690 ◽  
Author(s):  
A. Fiorini Morosini ◽  
O. Caruso ◽  
P. Veltri

Abstract The current paper reports on a case study investigating water distribution system management in emergency conditions when it is necessary to seal off a zone with isolation valves to allow repair. In these conditions, the pressure-driven analysis (PDA) is considered to be the most efficient approach for the analysis of a water distribution network (WDN), as it takes into account whether the head in a node is adequate to ensure service. The topics of this paper are innovative because, until now, previous approaches were based on the analysis of the network behaviour in normal conditions. In emergency conditions, it is possible to measure the reliable functioning of the system by defining an objective function (OF) that helps to choose the optimal number of additional valves in order to obtain adequate system control. The OF takes into account the new network topology by excluding the zone where the broken pipe is located. The results show that the solution did not improve significantly when the number of valves reached a threshold. The procedure applied to other real case studies seems to confirm the efficiency of the methodology even if further examination of other cases in different conditions is necessary.


2010 ◽  
Vol 3 (1) ◽  
pp. 21-27 ◽  
Author(s):  
J. Machell ◽  
S. R. Mounce ◽  
J. B. Boxall

Abstract. Hydraulic simulation models of water distribution networks are routinely used for operational investigations and network design purposes. However, their full potential is often never realised because, in the majority of cases, they have been calibrated with data collected manually from the field during a single historic time period and, as such, reflect the network operational conditions that were prevalent at that time, and they are then applied as part of a reactive, desktop investigation. In order to use a hydraulic model to assist proactive distribution network management its element asset information must be up to date and it should be able to access current network information to drive simulations. Historically this advance has been restricted by the high cost of collecting and transferring the necessary field measurements. However, recent innovation and cost reductions associated with data transfer is resulting in collection of data from increasing numbers of sensors in water supply systems, and automatic transfer of the data to point of use. This means engineers potentially have access to a constant stream of current network data that enables a new era of "on-line" modelling that can be used to continually assess standards of service compliance for pressure and reduce the impact of network events, such as mains bursts, on customers. A case study is presented here that shows how an online modelling system can give timely warning of changes from normal network operation, providing capacity to minimise customer impact.


2010 ◽  
Vol 107 ◽  
pp. 87-92 ◽  
Author(s):  
José Pérez García ◽  
Antonio Cortés Marco ◽  
Simón Nevado Santos

The main pipes in water distribution systems have, in many cases, an excess of static pressure. This excess of pressure is usually dissipated by means of intermediate reservoirs, pressure-reducing valves or any other device that produces the required energy loss with the aim to adjust the pressure level to the demand pattern of the system. This hydraulic energy can be used to directly drive a mechanical system or to generate electric power. In this type of recovery energy systems, the available hydraulic power is lower than 100 kW (micro-hydro). In this range, the utilization of conventional hydraulic turbines is not economically viable in short-medium time. In micro-hydropower applications the use of standard centrifugal pumps operated in reverse mode as hydraulic turbines (PAT) can be competitive. In this work, several prediction methods and algorithms suggested by different authors were analyzed and compared. Two case study, in the water system distribution of Murcia and Elche are also presented.


2017 ◽  
Vol 18 (3) ◽  
pp. 778-789 ◽  
Author(s):  
S. Parra ◽  
S. Krause ◽  
F. Krönlein ◽  
F. W. Günthert ◽  
T. Klunke

Abstract Pressure reducing valves (PRVs) are used in water distribution networks (WDNs) for pressure control and water loss reduction. In this study, a system composed of a PRV and a pump as turbine (PAT) in combination with intelligent pressure management is proposed and its performance is analysed experimentally. For this, data analysis using hydraulic modelling and extensive experimentation for a case study in Germany was performed. During the laboratory tests, the pressure at the critical point of the system could be successfully maintained at the selected value at variable discharges during a characteristic day, as a result of the advanced pressure modulation. Additionally, up to 2.3 kW of electrical energy were recovered, when the applied PAT was operating under full load, with a maximum total net system efficiency of 40%. Furthermore, the proposed pressure management was found to increase the water savings by up to 16% compared to conventional PRVs. This study concludes that the PAT-PRV-system may be suitable in WDNs with high differences in altitude, high operational pressures and high demand variability. For its application, the benefits and the investment costs, as well as the seasonal flow and pressure variations in the WDN should be analysed in detail.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1841
Author(s):  
Miguel Capelo ◽  
Bruno Brentan ◽  
Laura Monteiro ◽  
Dídia Covas

The current paper proposes a novel methodology for near–real time burst location and sizing in water distribution systems (WDS) by means of Multi–Layer Perceptron (MLP), a class of artificial neural network (ANN). The proposed methodology can be systematized in four steps: (1) construction of the pipe–burst database, (2) problem formulation and ANN architecture definition, (3) ANN training, testing and sensitivity analyses, (4) application based on collected data. A large database needs to be constructed using 24 h pressure–head data collected or numerically generated at different sensor locations during the pipe burst occurrence. The ANN is trained and tested in a real–life network, in Portugal, using artificial data generated by hydraulic extended period simulations. The trained ANN has demonstrated to successfully locate 60–70% of the burst with an accuracy of 100 m and 98% of the burst with an accuracy of 500 m and to determine burst sizes with uncertainties lower than 2 L/s in 90% of tested cases and lower than 0.2 L/s in 70% of the cases. This approach can be used as a daily management tool of water distribution networks (WDN), as long as the ANN is trained with artificial data generated by an accurate and calibrated WDS hydraulic models and/or with reliable pressure–head data collected at different locations of the WDS during the pipe burst occurrence.


2018 ◽  
Vol 19 (1) ◽  
pp. 11-18 ◽  
Author(s):  
F. J. Salguero ◽  
R. Cobacho ◽  
M. A. Pardo

Abstract Water distribution systems are made up of many interdependent elements that enable water supply to meet a demand that is variable in time and space. One of the main concerns for utility managers is quickly locating and repairing a leak after detection, during regular network water balance. This paper presents a two-stage methodology for locating a leak that is based on the hydraulic model of the network, and, particularly, on the conservation equations that govern network behaviour. In the first stage, the sensitivity of each element (nodes and pipes) is obtained for a given demand increase in any node. In the second stage, that sensitivity is combined with additional real data provided by the (possibly) existing pressure sensors and flowmeters installed throughout the network. As a final result, the system of equations thus obtained produces the theoretical leak flow at each network node that matches the network conditions. A subsequent analysis of the leak flows obtained highlights the node or nodes in which the leak is occurring. The presented methodology is applied and assessed in a case study.


Author(s):  
Jun Liu ◽  
Yinyin Kang

Abstract The consideration of isolation valves and segments is essential for evaluating the water service and resilience of water distribution systems when shutdowns are required under pipe failure. However, little work has been done on assessing the resilience response and intervention based on segments. This study investigates the impact of intervention (valve density and protection of critical segment) and response (recovery time and recovery sequence) on system resilience taking valve layout into consideration. An algorithm to identify segments based on the graph theory is proposed. Resilience is quantified using the satisfactory rate of the water supply demand. Critical segments are ranked based on resilience analysis. The resilience evaluation method is applied to a case study network. It is found that valve optimization can significantly reduce the number of valves without considerably decreasing the resilience performance. Valve density and the protection of critical segment can reduce the severity of pipe failure, while efficient recovery response can reduce the severity and shorten the duration of pipe failure simultaneously. The criticality of segments depends on the segment location and hydraulic interdependency among segments.


2020 ◽  
Vol 22 (3) ◽  
pp. 606-618
Author(s):  
Mengke Zhao ◽  
Chi Zhang ◽  
Haixing Liu ◽  
Guangtao Fu ◽  
Yuntao Wang

Abstract Fast detection of pipe burst in water distribution systems (WDSs) could improve customer satisfaction, increase the profits of water supply and more importantly reduce the loss of water resources. Therefore, sensor placement for pipe burst detection in WDSs has been a crucial issue for researchers and practitioners. This paper presents an economic evaluation indicator named as net cost based on cost–benefit analysis to solve the optimal pressure sensor placement problem. The net cost is defined as the sum of the normalized optimal detection uncovering rate and investment cost of sensors. The optimal detection uncovering rate and the optimal set of sensor locations are determined through a single-objective optimization model that maximizes the detection coverage rate under a fixed number of sensors. The optimal number of sensors is then determined by analyzing the relationship between the net cost and the number of sensors. The proposed method is demonstrated to be effective in determining both the optimal number of sensors and their locations on a benchmark network Net3. Moreover, the sensor accuracy and pipe burst flow magnitude are shown to be key uncertainties in determining the optimal number of sensors.


2009 ◽  
Vol 2 (2) ◽  
pp. 279-294 ◽  
Author(s):  
J. Machell ◽  
S. R. Mounce ◽  
J. B. Boxall

Abstract. Hydraulic simulation models of water distribution networks are routinely used for operational investigations and network design purposes. However, their full potential is often never realised because, in the majority of cases, they have been calibrated with data collected manually from the field during a single historic time period and, as such, reflect the network operational conditions that were prevalent at that time, and they are then applied as part of a reactive, desktop investigation. In order to use a hydraulic model to assist proactive distribution network management its element asset information must be up to date and it should be able to access current network information to drive simulations. Historically this advance has been restricted by the high cost of collecting and transferring the necessary field measurements. However, recent innovation and cost reductions associated with data transfer is resulting in collection of data from increasing numbers of sensors in water supply systems, and automatic transfer of the data to point of use. This means engineers potentially have access to a constant stream of current network data that enables a new era of "online" modelling that can be used to continually assess standards of service compliance for pressure and reduce the impact of network events, such as mains bursts, on customers. A case study is presented here that shows how an online modelling system can give timely warning of changes from normal network operation, providing capacity to minimise customer impact.


Sign in / Sign up

Export Citation Format

Share Document