scholarly journals Evaluating the capability of hybrid data-driven approaches to forecast monthly streamflow using hydrometric and meteorological variables

Author(s):  
Fariba Azarpira ◽  
Sajad Shahabi

Abstract Streamflow forecasting, as one of the most important issues in hydrological studies, plays a vital role in several aspects of water resources management such as reservoir operation, water allocation, and flood forecasting. In this study, wavelet-gene expression programming (WGEP) and wavelet-M5 prime (WM5P) techniques, as two robust artificial intelligence (AI) models, were applied for forecasting the monthly streamflow in Khoshkroud and Polroud Rivers located in two basins with the same names. Results of hybrid AI techniques were compared with those achieved by two stand-alone models of GEP and M5P. Seven combinations of hydrological (H) and meteorological (M) variables were considered to investigate the effect of climatic variables on the performance of the proposed techniques. Moreover, the performance of both stand-alone and hybrid models were evaluated by statistical criteria of correlation of coefficient, root-mean-square error, index of agreement, the Nash–Sutcliffe model efficiency coefficient, and relative improvement. The statistical results revealed that there is a dependency between ‘the M5P and GEP performance’ and ‘the geometric properties of basins (e.g., area, shape, slope, and river network density)’. It was found that a preprocessed technique could increase the performance of M5P and GEP models. Compared to the stand-alone techniques, the hybrid AI models resulted in higher performance. For both basins, the performance of the WM5P model was higher than the WGEP model, especially for extreme events. Overall, the results demonstrated that the proposed hybrid AI approaches are reliable tools for forecasting the monthly streamflow, while the meteorological and hydrometric variables are taken into account.

2017 ◽  
Vol 20 (2) ◽  
pp. 520-532 ◽  
Author(s):  
A. B. Dariane ◽  
Sh. Azimi

Abstract In this paper the performance of extreme learning machine (ELM) training method of radial basis function artificial neural network (RBF-ANN) is evaluated using monthly hydrological data from Ajichai Basin. ELM is a newly introduced fast method and here we show a novel application of this method in monthly streamflow forecasting. ELM may not work well for a large number of input variables. Therefore, an input selection is applied to overcome this problem. The Nash–Sutcliffe efficiency (NSE) of ANN trained by backpropagation (BP) and ELM algorithm using initial input selection was found to be 0.66 and 0.72, respectively, for the test period. However, when wavelet transform, and then genetic algorithm (GA)-based input selection are applied, the test NSE increase to 0.76 and 0.86, respectively, for ANN-BP and ANN-ELM. Similarly, using singular spectral analysis (SSA) instead, the coefficients are found to be 0.88 and 0.90, respectively, for the test period. These results show the importance of input selection and superiority of ELM and SSA over BP and wavelet transform. Finally, a proposed multistep method shows an outstanding NSE value of 0.97, which is near perfect and well above the performance of the previous methods.


2018 ◽  
Vol 10 (12) ◽  
pp. 1881 ◽  
Author(s):  
Yueyuan Zhang ◽  
Yungang Li ◽  
Xuan Ji ◽  
Xian Luo ◽  
Xue Li

Satellite-based precipitation products (SPPs) provide alternative precipitation estimates that are especially useful for sparsely gauged and ungauged basins. However, high climate variability and extreme topography pose a challenge. In such regions, rigorous validation is necessary when using SPPs for hydrological applications. We evaluated the accuracy of three recent SPPs over the upper catchment of the Red River Basin, which is a mountain gorge region of southwest China that experiences a subtropical monsoon climate. The SPPs included the Tropical Rainfall Measuring Mission (TRMM) 3B42 V7 product, the Climate Prediction Center (CPC) Morphing Algorithm (CMORPH), the Bias-corrected product (CMORPH_CRT), and the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) Climate Data Record (PERSIANN_CDR) products. SPPs were compared with gauge rainfall from 1998 to 2010 at multiple temporal (daily, monthly) and spatial scales (grid, basin). The TRMM 3B42 product showed the best consistency with gauge observations, followed by CMORPH_CRT, and then PERSIANN_CDR. All three SPPs performed poorly when detecting the frequency of non-rain and light rain events (<1 mm); furthermore, they tended to overestimate moderate rainfall (1–25 mm) and underestimate heavy and hard rainfall (>25 mm). GR (Génie Rural) hydrological models were used to evaluate the utility of the three SPPs for daily and monthly streamflow simulation. Under Scenario I (gauge-calibrated parameters), CMORPH_CRT presented the best consistency with observed daily (Nash–Sutcliffe efficiency coefficient, or NSE = 0.73) and monthly (NSE = 0.82) streamflow. Under Scenario II (individual-calibrated parameters), SPP-driven simulations yielded satisfactory performances (NSE >0.63 for daily, NSE >0.79 for monthly); among them, TRMM 3B42 and CMORPH_CRT performed better than PERSIANN_CDR. SPP-forced simulations underestimated high flow (18.1–28.0%) and overestimated low flow (18.9–49.4%). TRMM 3B42 and CMORPH_CRT show potential for use in hydrological applications over poorly gauged and inaccessible transboundary river basins of Southwest China, particularly for monthly time intervals suitable for water resource management.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 839 ◽  
Author(s):  
Tewodros M. Tena ◽  
Phenny Mwaanga ◽  
Alick Nguvulu

The Chongwe River Catchment (CRC) is located in Zambia. It receives a mean annual precipitation of 889 mm. The catchment is facing growing anthropogenic and socio-economic activities leading to severe water shortages in recent years, particularly from July to October. The objective of this study was to assess the available water resources by investigating the important hydrological components and estimating the catchment water balance using the Water Evaluation and Planning (WEAP) model. The average precipitation over a 52 year period and a 34 year period of streamflow measurement data for four stations were used in the hydrological balance model. The results revealed that the catchment received an estimated mean annual precipitation of 4603.12 Mm3. It also released an estimated mean annual runoff and evapotranspiration of 321.94 Mm3 and 4063.69 Mm3, respectively. The estimated mean annual total abstractions in the catchment was 119.87 Mm3. The average annual change in the catchment storage was 120.18 Mm3. The study also determined an external inflow of 22.55 Mm3 from the Kafue River catchment. The simulated mean monthly streamflow at the outlet of the CRC was 10.32 m3/s. The estimated minimum and maximum streamflow volume of the Chongwe River was about 1.01 Mm3 in September and 79.7 Mm3 in February, respectively. The performance of the WEAP model simulation was assessed statistically using the coefficient of determination (R2 = 0.97) and the Nash–Sutcliffe model efficiency coefficient (NSE = 0.64). The R2 and NSE values indicated a satisfactory model fit and result. Meeting the water demand of the growing population and associated socio-economic development activities in the CRC is possible but requires appropriate water resource management options.


2018 ◽  
Vol 63 (15-16) ◽  
pp. 2060-2075 ◽  
Author(s):  
André Gustavo da Silva Melo Honorato ◽  
Gustavo Barbosa Lima da Silva ◽  
Celso Augusto Guimarães Santos

Sign in / Sign up

Export Citation Format

Share Document