The Utilization of Spaceborne Microwave Radiometers for Monitoring Snowpack Properties

1979 ◽  
Vol 10 (1) ◽  
pp. 25-40 ◽  
Author(s):  
A. Rango ◽  
A. T. C. Chang ◽  
J. L. Foster

Snow accumulation and depletion at specific locations can be monitored from space by observing related variations in microwave brightness temperatures. Using vertically and horizontally polarized brightness temperatures from the Nimbus 6 Electrically Scanning Microwave Radiometer, a discriminant function can be used to separate snow from no snow areas and map snowcovered area on a continental basis. For dry snow conditions on the Canadian high plains significant relationships between snow depth or water equivalent and microwave brightness temperature were developed which could permit remote determination of these snow properties after acquisition of a wider range of data. The presence of melt water in the snowpack causes a marked increase in brightness temperature which can be used to predict snowpack priming and timing of runoff. As the resolutions of satellite microwave sensors improve the application of these results to snow hydrology problems should increase.

1993 ◽  
Vol 17 ◽  
pp. 131-136 ◽  
Author(s):  
Kenneth C. Jezek ◽  
Carolyn J. Merry ◽  
Don J. Cavalieri

Spaceborne data are becoming sufficiently extensive spatially and sufficiently lengthy over time to provide important gauges of global change. There is a potentially long record of microwave brightness temperature from NASA's Scanning Multichannel Microwave Radiometer (SMMR), followed by the Navy's Special Sensor Microwave Imager (SSM/I). Thus it is natural to combine data from successive satellite programs into a single, long record. To do this, we compare brightness temperature data collected during the brief overlap period (7 July-20 August 1987) of SMMR and SSM/I. Only data collected over the Antarctic ice sheet are used to limit spatial and temporal complications associated with the open ocean and sea ice. Linear regressions are computed from scatter plots of complementary pairs of channels from each sensor revealing highly correlated data sets, supporting the argument that there are important relative calibration differences between the two instruments. The calibration scheme was applied to a set of average monthly brightness temperatures for a sector of East Antarctica.


1993 ◽  
Vol 17 ◽  
pp. 131-136 ◽  
Author(s):  
Kenneth C. Jezek ◽  
Carolyn J. Merry ◽  
Don J. Cavalieri

Spaceborne data are becoming sufficiently extensive spatially and sufficiently lengthy over time to provide important gauges of global change. There is a potentially long record of microwave brightness temperature from NASA's Scanning Multichannel Microwave Radiometer (SMMR), followed by the Navy's Special Sensor Microwave Imager (SSM/I). Thus it is natural to combine data from successive satellite programs into a single, long record. To do this, we compare brightness temperature data collected during the brief overlap period (7 July-20 August 1987) of SMMR and SSM/I. Only data collected over the Antarctic ice sheet are used to limit spatial and temporal complications associated with the open ocean and sea ice. Linear regressions are computed from scatter plots of complementary pairs of channels from each sensor revealing highly correlated data sets, supporting the argument that there are important relative calibration differences between the two instruments. The calibration scheme was applied to a set of average monthly brightness temperatures for a sector of East Antarctica.


2012 ◽  
Vol 9 (7) ◽  
pp. 8105-8136
Author(s):  
T. Lakhankar ◽  
J. Muñoz ◽  
P. Romanov ◽  
A. M. Powell ◽  
N. Krakauer ◽  
...  

Abstract. The CREST-Snow Analysis and Field Experiment (CREST-SAFE) was carried out during winter 2011 at the research site of the National Weather Service office, Caribou ME, USA. In this ground experiment, dual polarized microwave (37 and 89 GHz) observations are conducted along with detailed synchronous observations of snowpack properties. The objective of this long term field experiment is to improve our understanding of the effect of changing snow characteristics (grain size, density, temperature) under various meteorological conditions on the microwave emission of snow and hence to improve retrievals of snow cover properties from satellite observations in the microwave spectral range. In this paper, we presented the overview of field experiment and preliminary analysis of the microwave observations for the first year of experiment along with support observations of the snowpack properties obtained during the 2011 winter season. SNTHERM and HUT (Helsinki University of Technology) snow emission model were used to simulate snowpack properties and microwave brightness temperatures respectively. Simulated brightness temperatures were compared with observed brightness temperature from radiometer under different snow conditions. On the time series, large difference in the brightness temperature were observed for fresh compared to aged snow even under the same snow depth, suggesting a substantial impact of other parameters such as: snow grain size and density on microwave observations. A large diurnal variation in the 37 and 89 GHz brightness temperature with small depolarization factor was observed due to cold nights and warm days, which caused a cycling between wet snow and ice-over-snow states during the early spring. Scattering analysis of microwave brightness temperatures from radiometers were performed to distinguished different snow conditions developed through the winter season.


2021 ◽  
pp. 78-85
Author(s):  
А. G. Grankov ◽  
◽  
А. А. Milshin ◽  

An accuracy of reproduction of daily variations in the ocean–atmosphere system brightness temperature in the areas of development and movement of tropical hurricanes in the Caribbean Sea and Gulf of Mexico is analyzed. The analysis is based on the data of single and group satellite microwave radiometer measurements. The results are obtained using archival measurement data of SSM/I radiometers from the F11, F13, F14, and F15 DMSP satellites during the period of existence of tropical hurricanes Bret and Wilma. An example is given to demonstrate the use of daily brightness temperatures obtained from DMSP satellites for monitoring the development and propagation of hurricane Wilma.


2011 ◽  
Vol 57 (201) ◽  
pp. 171-182 ◽  
Author(s):  
Ludovic Brucker ◽  
Ghislain Picard ◽  
Laurent Arnaud ◽  
Jean-Marc Barnola ◽  
Martin Schneebeli ◽  
...  

AbstractTime series of observed microwave brightness temperatures at Dome C, East Antarctic plateau, were modeled over 27 months with a multilayer microwave emission model based on dense-medium radiative transfer theory. The modeled time series of brightness temperature at 18.7 and 36.5 GHz were compared with Advanced Microwave Scanning Radiometer–EOS observations. The model uses in situ high-resolution vertical profiles of temperature, snow density and grain size. The snow grain-size profile was derived from near-infrared (NIR) reflectance photography of a snow pit wall in the range 850–1100 nm. To establish the snow grain-size profile, from the NIR reflectance and the specific surface area of snow, two empirical relationships and a theoretical relationship were considered. In all cases, the modeled brightness temperatures were overestimated, and the grain-size profile had to be scaled to increase the scattering by snow grains. Using a scaling factor and a constant snow grain size below 3 m depth (i.e. below the image-derived snow pit grain-size profile), brightness temperatures were explained with a root-mean-square error close to 1 K. Most of this error is due to an overestimation of the predicted brightness temperature in summer at 36.5 GHz.


1985 ◽  
Vol 16 (2) ◽  
pp. 57-66 ◽  
Author(s):  
A. T. C. Chang ◽  
J. L. Foster ◽  
M. Owe ◽  
D. K. Hall ◽  
A. Rango

Microwave signatures have been found to be related to variations in snow conditions found on the earth's surface. Most of these observations have been obtained by passive microwave radiometry. In general, inverse relationships between microwave brightness temperature (TB) and snow depth were observed for dry snowpacks. The results from truck-mounted scatterometers indicated that the backscattering cross sections from snowpacks increased with snow depths, also in dry snow conditions. The reported aircraft mission was the first trial in which simultaneous active and passive microwave measurements were made over a wet snowpack. The test site was located in the Colorado Rocky Mountains. The results from this experiment suggest that microwave techniques using both radiometers and scatterometers may be useful in determining snow water equivalent even when the snowpack is wet.


2013 ◽  
Vol 17 (2) ◽  
pp. 783-793 ◽  
Author(s):  
T. Y. Lakhankar ◽  
J. Muñoz ◽  
P. Romanov ◽  
A. M. Powell ◽  
N. Y. Krakauer ◽  
...  

Abstract. The CREST-Snow Analysis and Field Experiment (CREST-SAFE) was carried out during January–March 2011 at the research site of the National Weather Service office, Caribou, ME, USA. In this experiment dual-polarized microwave (37 and 89 GHz) observations were accompanied by detailed synchronous observations of meteorology and snowpack physical properties. The objective of this long-term field experiment was to improve understanding of the effect of changing snow characteristics (grain size, density, temperature) under various meteorological conditions on the microwave emission of snow and hence to improve retrievals of snow cover properties from satellite observations. In this paper we present an overview of the field experiment and comparative preliminary analysis of the continuous microwave and snowpack observations and simulations. The observations revealed a large difference between the brightness temperature of fresh and aged snowpack even when the snow depth was the same. This is indicative of a substantial impact of evolution of snowpack properties such as snow grain size, density and wetness on microwave observations. In the early spring we frequently observed a large diurnal variation in the 37 and 89 GHz brightness temperature with small depolarization corresponding to daytime snowmelt and nighttime refreeze events. SNTHERM (SNow THERmal Model) and the HUT (Helsinki University of Technology) snow emission model were used to simulate snowpack properties and microwave brightness temperatures, respectively. Simulated snow depth and snowpack temperature using SNTHERM were compared to in situ observations. Similarly, simulated microwave brightness temperatures using the HUT model were compared with the observed brightness temperatures under different snow conditions to identify different states of the snowpack that developed during the winter season.


1991 ◽  
Vol 37 (125) ◽  
pp. 129-139 ◽  
Author(s):  
Michel Fily ◽  
Jean-Pierre Benoist

Abstract SMMR data over Antarctica have been statistically analysed for four different periods of 1 year (1981) and compared to geophysical data such as surface temperature, snow-accumulation rate and topography. The spatial variations of the microwave signature are stable with time. Although the ten channels are highly correlated, principal-component analysis reveals the importance of polarization and frequency. The difference between brightness temperatures at the two polarizations is found to be dependent on the atmospheric water-vapour fluxes over the ice sheet, which modify the temperature-accumulation ratio and therefore the snow stratification. The brightness-temperature gradient with frequency is related to the topography of the central plateau area. A more important subsidence over diverging areas could explain the different structure of the accumulated snow.


Sign in / Sign up

Export Citation Format

Share Document