Current practices in manufacturing locally-made ceramic pot filters for water treatment in developing countries

2013 ◽  
Vol 3 (2) ◽  
pp. 252-261 ◽  
Author(s):  
Justine Rayner ◽  
Brian Skinner ◽  
Daniele Lantagne

Locally produced ceramic pot filters have been shown to improve the microbiological quality of household drinking water and reduce the burden of diarrheal disease in users. They are considered one of the most promising household water treatment methods. However, overarching manufacturing and quality control guidelines do not exist for the 35 decentralized filter factories in 18 countries that currently produce filters. In this study, we conducted manufacturing process surveys with 25 filter factories worldwide to document production methods and identify areas where manufacturing and quality control guidelines are needed. Our results show that manufacturing processes vary widely both between and within factories, including the consistency of materials, manufacturing methods, and quality control practices. These variations pose concerns about the consistency and quality of locally produced filters in the absence of standardized quality control procedures. We propose areas where manufacturing guidelines are needed to assist factories in producing consistently high quality filters, and identify topics where further research is needed to refine manufacturing recommendations. These results guided the development of a best practice manual that described consensus-based recommendations to advance consistent, quality-controlled filter production world-wide.

2017 ◽  
Vol 16 (1) ◽  
pp. 112-125 ◽  
Author(s):  
Natalie Wilhelm ◽  
Anya Kaufmann ◽  
Elizabeth Blanton ◽  
Daniele Lantagne

Abstract Household water treatment with chlorine can improve the microbiological quality of household water and reduce diarrheal disease. We conducted laboratory and field studies to inform chlorine dosage recommendations. In the laboratory, reactors of varying turbidity (10–300 NTU) and total organic carbon (0–25 mg/L addition) were created, spiked with Escherichia coli, and dosed with 3.75 mg/L sodium hypochlorite. All reactors had >4 log reduction of E. coli 24 hours after chlorine addition. In the field, we tested 158 sources in 22 countries for chlorine demand. A 1.88 mg/L dosage for water from improved sources of <5 or <10 NTU turbidity met free chlorine residual criteria (≤2.0 mg/L at 1 hour, ≥0.2 mg/L at 24 hours) 91–94% and 82–87% of the time at 8 and 24 hours, respectively. In unimproved water source samples, a 3.75 mg/L dosage met relaxed criteria (≤4.0 mg/L at 1 hour, ≥0.2 mg/L after 24 hours) 83% and 65% of the time after 8 and 24 hours, respectively. We recommend water from improved/low turbidity sources be dosed at 1.88 mg/L and used within 24 hours, and from unimproved/higher turbidity sources be dosed at 3.75 mg/L and consumed within 8 hours. Further research on field effectiveness of chlorination is recommended.


2012 ◽  
Vol 2 (4) ◽  
pp. 250-253 ◽  
Author(s):  
Clair Null ◽  
Daniele Lantagne

Household water treatment with sodium hypochlorite has been shown to reduce self-reported diarrheal disease in developing countries. Reported hypochlorite use, time since treatment, total chlorine residual (TCR), and E. coli concentration results from 589 household surveys in rural Kenya were analyzed to quantify the effect of exceeding recommended 24 hour post-treatment water storage time in ceramic pots. Exceeding storage time recommendations impacted treatment efficacy, as 87% of reported treaters with TCR ≥ 0.2 mg/L storing their water ≤ 24 hours met World Health Organization (WHO) E. coli guideline values, compared to 77% of reported treaters with TCR ≥ 0.2 mg/L storing water >24 hours (p = 0.024) and 7% of reported non-treaters. Implementing organizations face the trade-off between promoting treating water every 24 hours and accepting slightly compromised efficacy.


2021 ◽  
Vol 22 (18) ◽  
pp. 9736
Author(s):  
Collin Knox Coleman ◽  
Eric Mai ◽  
Megan Miller ◽  
Shalini Sharma ◽  
Clark Williamson ◽  
...  

Viruses are major contributors to the annual 1.3 million deaths associated with the global burden of diarrheal disease morbidity and mortality. While household-level water treatment technologies reduce diarrheal illness, the majority of filtration technologies are ineffective in removing viruses due to their small size relative to filter pore size. In order to meet the WHO health-based tolerable risk target of 10−6 Disability Adjusted Life Years per person per year, a drinking water filter must achieve a 5 Log10 virus reduction. Ceramic pot water filters manufactured in developing countries typically achieve less than 1 Log10 virus reductions. In order to overcome the shortfall in virus removal efficiency in household water treatment filtration, we (1) evaluated the capacity of chitosan acetate and chitosan lactate, as a cationic coagulant pretreatment combined with ceramic water filtration to remove lab cultured and sewage derived viruses and bacteria in drinking waters, (2) optimized treatment conditions in waters of varying quality and (3) evaluated long-term continuous treatment over a 10-week experiment in surface waters. For each test condition, bacteria and virus concentrations were enumerated by culture methods for influent, controls, and treated effluent after chitosan pretreatment and ceramic water filtration. A > 5 Log10 reduction was achieved in treated effluent for E.coli, C. perfringens, sewage derived E. coli and total coliforms, MS2 coliphage, Qβ coliphage, ΦX174 coliphage, and sewage derived F+ and somatic coliphages.


2016 ◽  
Vol 14 (6) ◽  
pp. 950-960
Author(s):  
Kyle S. Enger ◽  
Emaly S. Leak ◽  
Tiong Gim Aw ◽  
Angela D. Coulliette ◽  
Joan B. Rose

Many different household water treatment (HWT) methods have been researched and promoted to mitigate the serious burden of diarrheal disease in developing countries. However, HWT methods using bromine have not been extensively evaluated. Two gravity-fed HWT devices (AquaSure™ and Waterbird™) were used to test the antimicrobial effectiveness of HaloPure® Br beads (monobrominated hydantoinylated polystyrene) that deliver bromine. As water flows over the beads, reactive bromine species are eluted, which inactivate microorganisms. To assess log10 reduction values (LRVs) for Vibrio cholerae, Salmonella enterica Typhimurium, bacteriophage MS2, human adenovirus 2 (HAdV2), and murine norovirus (MN), these organisms were added to potable water and sewage-contaminated water. These organisms were quantified before and after water treatment by the HWT devices. On average, 6 LRVs against Vibrio were attained, as well as 5 LRVs against Salmonella, 4 LRVs against MS2, 5 LRVs against HAdV2, and 3 LRVs against MN. Disinfection was similar regardless of whether sewage was present. Polymer beads delivering bromine to drinking water are a potentially effective and useful component of HWT methods in developing countries.


2012 ◽  
Vol 11 (1) ◽  
pp. 98-109
Author(s):  
Kenan Okurut ◽  
Eleanor Wozei ◽  
Robinah Kulabako ◽  
Lillian Nabasirye ◽  
Joel Kinobe

In low income settlements where the quality of drinking water is highly contaminated due to poor hygienic practices at community and household levels, there is need for appropriate, simple, affordable and environmentally sustainable household water treatment technology. Solar water disinfection (SODIS) that utilizes both the thermal and ultra-violet effect of solar radiation to disinfect water can be used to treat small quantities of water at household level to improve its bacteriological quality for drinking purposes. This study investigated the efficacy of the SODIS treatment method in Uganda and determined the optimal condition for effective disinfection. Results of raw water samples from the study area showed deterioration in bacteriological quality of water moved from source to the household; from 3 to 36 cfu/100 mL for tap water and 75 to 126 cfu/100 mL for spring water, using thermotolerant coliforms (TTCs) as indicator microorganisms. SODIS experiments showed over 99.9% inactivation of TTCs in 6 h of exposure, with a threshold temperature of 39.5 ± 0.7°C at about 12:00 noon, in the sun during a clear sunny day. A mathematical optimal condition model for effective disinfection has been calibrated to predict the decline of the number of viable microorganisms over time.


2004 ◽  
Vol 50 (1) ◽  
pp. 111-115 ◽  
Author(s):  
T. Clasen ◽  
J. Brown ◽  
O. Suntura ◽  
S. Collin

A randomised controlled field trial was conducted to evaluate the effectiveness of ceramic drip filters to improve the microbiological quality of drinking water in a low-income community in rural Bolivia. In four rounds of water sampling over five months, 100% of the samples were free of thermotolerant (faecal) coliforms (TTC) compared to an arithmetic mean TTC count of 1517, 406, 167 and 245 among control households which continued to use their customary sources of drinking water. The filter systems produced water that consistently met WHO drinking-water standards despite levels of turbidity that presented a challenge to other low-cost POU treatment methods. The filter systems also demonstrated an ability to maintain the high quality of the treated water against subsequent re-contamination in the home.


2017 ◽  
Vol 5 (1) ◽  
pp. 57-64 ◽  
Author(s):  
Heshmatollah Nourmoradi ◽  
Neda Karami ◽  
Soraya Karami ◽  
Sajad Mazloomi ◽  
◽  
...  

1995 ◽  
Vol 31 (5-6) ◽  
pp. 75-79 ◽  
Author(s):  
M. Würzer ◽  
A. Wiedenmann ◽  
K. Botzenhart

In Germany the application of procedures such as flocculation and filtration in the preparation of drinking water results in the annual production of an estimated 500,000 t of sediments and sludges. Some of these residues have a potential for being reused, for example in agriculture, forestry, brickworks or waste water treatment. To assess the microbiological quality of residues from waterworks methods for the detection of enterobacteria, Escherichia coli, Salmonella, Pseudomonas aeruginosa, Legionella, poliovirus, Ascaris suis eggs and Cryptosporidium have been evaluated regarding their detection limits and were applied to various residues from German waterworks. Results show that sediments and sludges may contain pathogenic bacteria, viruses and protista. When residues from waterworks are intended to be reused in agriculture or forestry the microbiological quality should therefore be considered.


Sign in / Sign up

Export Citation Format

Share Document