scholarly journals Drinking water quality and solar disinfection: Effectiveness in peri-urban households in Nepal

2005 ◽  
Vol 3 (3) ◽  
pp. 239-248 ◽  
Author(s):  
Rochelle C. Rainey ◽  
Anna K. Harding

The study examined pH, turbidity and fecal contamination of drinking water from household water storage containers, wells and taps, and the Godawari River, and tested the effectiveness of solar disinfection (SODIS) in reducing levels of fecal contamination from household containers. The research was conducted in 40 households in a village 6 km outside the capital city of Kathmandu, Nepal. Three rounds of data were collected: a baseline in March 2002 followed by training in solar disinfection, and follow-ups in June and July 2002. Untreated drinking water was found to have levels of contamination ranging from 0 to too numerous to count fecal coliform CFU 100 ml−1. Source water was significantly more contaminated than water from the household storage containers. Wells were less contaminated than taps. SODIS reduced the level of contamination under household conditions. Turbidity from taps was above 30 NTU in the rainy season, above the maximum for effective solar disinfection. SODIS was routinely adopted by only 10% of the participating households during the study.

2019 ◽  
Author(s):  
Goyitom Gebremedhn ◽  
Abera Aregawi Berhe ◽  
Abraham Aregay Desta ◽  
Lemlem Legesse

Abstract Background Fecal contamination of drinking water sources is the main cause of diarrhea with estimated incidence of 4.6 billion episodes and 2.2 million deaths every year. Methods A total of 145 water samples of different source type were collected from different areas in Tigray region from August 2018 to January 2019. The water samples from each site were selected purposively which involved sampling of water sources with the highest number of users and functionality status during the study period. Most Probable Number (MPN) protocol was used for the bacteriological analysis of the samples. Results A total of 145 water samples were collected from six zones in Tigray region, Ethiopia from August 2018 to January 2019. The study indicated that 63(43.5%) of the water samples were detected to have fecal coliform which is E.coli. In Mekelle city, which is the capital city of Tigray region, three in five 34(60.7%) of the collected samples were confirmed to have fecal coliform. Water samples from health facilities were 9.48 times [AOR=9.48, 95%CI: (1.59, 56.18)] more likely to have fecal coliform. Water samples from wells were 10.23 times [AOR=10.23, 95%CI: (2.74, 38.26)] more likely to have fecal coliform than water samples from Tap/Pipe. Similarly, water samples from hand pumps were 22.28 times [AOR=22.28, 95%CI: (1.26, 393.7)] more likely to have fecal coliform than water samples from Tap/Pipe. Water samples reported to be not chlorinated were 3.51 times [AOR=3.51, 95%CI: (1.35, 9.13)] more likely to have fecal coliform than water samples from chlorinated sources. Conclusion In this study all water source, including the chlorinated drinking water sources, were found highly contaminated with fecal origin bacteria. This may be mainly due to constructional defects, poor sanitation inspection, poor maintenance, intermittent water supply and irregular chlorination.


Author(s):  
D. Daniel ◽  
Arnt Diener ◽  
Jack van de Vossenberg ◽  
Madan Bhatta ◽  
Sara J. Marks

Accurate assessments of drinking water quality, household hygenic practices, and the mindset of the consumers are critical for developing effective water intervention strategies. This paper presents a microbial quality assessment of 512 samples from household water storage containers and 167 samples from points of collection (POC) in remote rural communities in the hilly area of western Nepal. We found that 81% of the stored drinking water samples (mean log10 of all samples = 1.16 colony-forming units (CFU)/100 mL, standard deviation (SD) = 0.84) and 68% of the POC samples (mean log10 of all samples = 0.57 CFU/100 mL, SD = 0.86) had detectable E. coli. The quality of stored water was significantly correlated with the quality at the POC, with the majority (63%) of paired samples showing a deterioration in quality post-collection. Locally applied household water treatment (HWT) methods did not effectively improve microbial water quality. Among all household sanitary inspection questions, only the presence of livestock near the water storage container was significantly correlated with its microbial contamination. Households’ perceptions of their drinking water quality were mostly influenced by the water’s visual appearance, and these perceptions in general motivated their use of HWT. Improving water quality within the distribution network and promoting safer water handling practices are proposed to reduce the health risk due to consumption of contaminated water in this setting.


2008 ◽  
Vol 7 (1) ◽  
pp. 145-154 ◽  
Author(s):  
Jayasheel Eshcol ◽  
Prasanta Mahapatra ◽  
Sarita Keshapagu

Water-borne illness, primarily caused by fecal contamination of drinking water, is a major health burden in the state of Andhra Pradesh, India. Currently drinking water is treated at the reservoir level and supplied on alternate days, necessitating storage in households for up to 48 hrs. We hypothesized that fecal contamination occurs principally during storage due to poor water handling. In this study we tested for coliform bacteria in water samples collected at distribution points as household storage containers were filled, and then tested containers in the same households 24–36 hours after collection. We also conducted an observational survey to make an assessment of water handling and hygiene. Ninety-two percent (47/51) of samples tested at supply points were adequately chlorinated and bacterial contamination was found in two samples with no residual chlorine. Samples collected from household storage containers showed an increase in contamination in 18/50 houses (36%). Households with contaminated stored samples did not show significant differences in demographics, water handling, hygiene practices, or sanitation. Nevertheless, the dramatic increase in contamination after collection indicates that until an uninterrupted water supply is possible, the point at which the biggest health impact can be made is at the household level.


2021 ◽  
Vol 6 (4) ◽  
pp. 181
Author(s):  
Jannatul Ferdous ◽  
Ridwan Bin Rashid ◽  
Rebeca Sultana ◽  
Sabera Saima ◽  
Musharrat Jahan Prima ◽  
...  

This study aimed to investigate the origin of diverse pathotypes of E. coli, isolated from communal water sources and from the actual drinking water vessel at the point-of-drinking inside households in a low-income urban community in Arichpur, Dhaka, Bangladesh, using a polymerase chain reaction (PCR). Forty-six percent (57/125, CI 95%: 41−58) of the isolates in the point-of-drinking water and 53% (55/103, CI 95%: 45−64) of the isolates in the source water were diarrheagenic E. coli. Among the pathotypes, enterotoxigenic E. coli (ETEC) was the most common, 81% (46/57) of ETEC was found in the point-of-drinking water and 87% (48/55) was found in the communal source water. Phylogenetic group B1, which is predominant in animals, was the most frequently found isolate in both the point-of-drinking water (50%, 91/181) and in the source (50%, 89/180) water. The phylogenetic subgroup B23, usually of human origin, was more common in the point-of-drinking water (65%, 13/20) than in the source water (35%, 7/20). Our findings suggest that non-human mammals and birds played a vital role in fecal contamination for both the source and point-of-drinking water. Addressing human sanitation without a consideration of fecal contamination from livestock sources will not be enough to prevent drinking-water contamination and thus will persist as a greater contributor to diarrheal pathogens.


Author(s):  
Farhan Mohammad Khan ◽  
Rajiv Gupta

Escherichia coli or E. coli is a member of the fecal coliform group and is a more specific indicator of fecal contamination than other fecal coliform species, its presence indicate possibly presence of harmful bacteria which will cause diseases and it also suggests the extent as well as the nature of the contaminants. E. coli bacteria able to survive in water for 4 – 12 weeks and at present, it appears as an indicator to provide the accurate bacterial contamination of fecal matter in drinking water, because of the availability of simple, affordable, fast, sensitive and exact detection techniques. According to the laboratory experiment based techniques, 24 - 48 hours are required for the bacterial concentration to be reported. So, there is a necessity for continuous monitoring. Techniques for detection of many pathogenic bacterial strains are not yet available, sometimes days to weeks are required to get the results. To overcome the difficulties, expensive and time-consuming techniques are required to detect, count and identify the presence of specific bacterial strain. Public health relies on online monitoring of water quality that depends majorly on examination of fecal indicator bacteria, thus protection of health requires fecal pollution indicator so that it is not required to analyze drinking water to overcome the problems associated with waterborne diseases. This paper will brief the classification, sources, survival of E. coli bacteria and its correlation with basic water quality parameters in water sources.```


Author(s):  
Steven Lacey ◽  
Ramon Lopez ◽  
Charles Frangos ◽  
Amid Khodadoust

In response to a rural community’s concern regarding diarrheal disease, particularly among children, a field assessment was performed to determine the concentration of 4 classes of indicator bacteria: aerobic bacteria, total coliform, fecal coliform and Escherichia coli. Matched supply tap and storage container samples were taken from 28 households; two additional samples were taken at the main storage tank. Total and free chlorine concentration was also determined for each sample. While nearly all samples taken from household taps were near or below limits of detection, samples from storage containers all showed high densities of indicator bacteria and one was positive for Salmonella. All chlorine measurements indicated concentrations of < 0.5 ppm. These data suggest that while the source well water shows indicator bacteria concentrations at or below limits of detection, drinking water becomes significantly more hazardous while in storage containers at the household level, and this reflects insufficient chlorination. An uninterrupted and adequately chlorinated water supply system is planned to eliminate the need for drinking water storage at the household level.


Author(s):  
Varun Goel ◽  
Griffin J. Bell ◽  
Sumati Sridhar ◽  
Md. Sirajul Islam ◽  
Md. Yunus ◽  
...  

Deep tubewells are a key component of arsenic mitigation programs in rural Bangladesh. Compared to widely prevalent shallow tubewells, deep tubewells reduce ground-water arsenic exposure and provide better microbial water quality at source. However, the benefits of clean drinking-water at these more distant sources may be abated by higher levels of microbial contamination at point-of-use. One such potential pathway is the use of contaminated surface water for washing drinking-water storage containers. The aim of this study is to compare the prevalence of surface water use for washing drinking-water storage containers among deep and shallow tubewell users in a cohort of 499 rural residents in Matlab, Bangladesh. We employ a multi-level logistic regression model to measure the effect of tubewell type and ownership status on the odds of washing storage containers with surface water. Results show that deep tubewell users who do not own their drinking-water tubewell, have 6.53 times the odds [95% CI: 3.56, 12.00] of using surface water for cleaning storage containers compared to shallow tubewell users, who own their drinking-water source. Even deep tubewell users who own a private well within walking distance have 2.53 [95% CI: 1.36, 4.71] times the odds of using surface water compared to their shallow tubewell counterparts. These results highlight the need for interventions to limit risk substitution, particularly the increased use of contaminated surface water when access to drinking water is reduced. Increasing ownership of and proximity to deep tubewells, although crucial, is insufficient to achieve equity in safe drinking-water access across rural Bangladesh.


2020 ◽  
Author(s):  
P Budeli ◽  
RC Moropeng ◽  
L Mpenyana-Monyatsi ◽  
I Kamika ◽  
MNB Momba

ABSTRACTThe key to reducing or even eradicating the burden of waterborne diseases is through appropriate sanitation facilities and piped water systems. Installation of centralised system may take decades to be established, especially in impoverished rural communities of African countries. A survey of 88 households representing Makwane, a scattered settlement in South Africa, Limpopo Province, was conducted to assess the status of basic services. A questionnaire was designed to obtain the required information, such as improved water sources, improved sanitation facilities, hygiene practices and incidence of diarrhoeal diseases in the community. A house-to-house survey was conducted from July to August in 2014 and data were collected from the heads of each household. Results of the survey revealed a complete absence of improved drinking water sources in the community (100%). People rely on any available water sources such stream water, or on rainwater harvesting. Safe hygiene practices were observed in most households with regards to water storage as they store water in 25 L plastic buckets (57%), vessels stored inside a room (76%), use storage containers covered with a lid (76%) and wash these containers at any time prior to storing water (39%). Results also indicated a high percentage of households not treating water (81%) prior to use, disposing wastewater in the yard (97%), lacking access to improved sanitation facilities (41%), and not allowing children under 12 years old to use the toilets (62%). As a result, they practise open defecation as an alternative sanitation facility (86%). The main water source for the community was found to be the stream (31%) and this source is used for adequate personal hygiene in terms of full body bath (94%). In terms of health outcomes, the most prevalent health problem was found to be diarrhoea (75%), which occurred mostly in children less than 5 years old and was found to persist up to 3 days (34%). The community generally visited the clinic (75%) in cases of health problems. The implementation of point-of-use household drinking water treatment in Makwane households for the production of safe drinking water is highly recommended. In addition to this, a special education with emphasis on drinking water storage, cleaning of water storage containers and safe disposal of wastewater should be offered. Open defecation should also be discouraged to mitigate the bacterial contamination of water sources and transmission of diseases.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Gabrielle String ◽  
Marta Domini ◽  
Patrick Mirindi ◽  
Hannah Brodsky ◽  
Yarmina Kamal ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document