scholarly journals Holy springs and holy water: underestimated sources of illness?

2012 ◽  
Vol 10 (3) ◽  
pp. 349-357 ◽  
Author(s):  
Alexander K. T. Kirschner ◽  
Michael Atteneder ◽  
Angelika Schmidhuber ◽  
Sonja Knetsch ◽  
Andreas H. Farnleitner ◽  
...  

Use of holy springs and holy water is inherent in religious activities. Holy spring water is also used extensively for personal drinking water, although not assessed according to drinking water standards. Holy water in churches and chapels may cause infections via wetting of lips and sprinkling on persons. Our aim was to assess the microbiological and chemical water quality of holy springs and holy water in churches and hospital chapels. Of the holy springs investigated, only 14% met the microbiological and chemical requirements of national drinking water regulations. Considering results from sanitary inspections of the water catchments, no spring was assessed as a reliable drinking water source. All holy water samples from churches and hospital chapels showed extremely high concentrations of HPC; fecal indicators, Pseudomonas aeruginosa and Staphylococcus aureus occurred only in the most frequently visited churches. We conclude that it is highly necessary to include holy springs in programs for assessment and management of water quality. Public awareness has to be raised to perceive holy springs as potential sources of illness. Holy water can be another source of infection, especially in hospital chapels and frequently visited churches. Recommendations are made for proper water quality management of both water types.

Author(s):  
Hew Cameron Merrett ◽  
Wei Tong Chen ◽  
Jao Jia Horng

The success of source protection in ensuring safe drinking water is centered around being able to understand the hazards present in the catchment then plan and implement control measures to manage water quality risk to levels which can be controlled through downstream barriers. The programs in place to manage source protection are complex sociotechnical systems involving policy, standards, regulators, technology, human factors and so on. This study uses System Theoretic Process Analysis (STPA) to analyze the operational hazards of a typical drinking water source protection (DWSP) program and identify control measures to ensure safe operations. To validate the results a questionnaire was developed and distributed to specialists in DWSP in Taiwan, Australia and Greece. Using Principle Components Analysis (PCA) of the questionnaire responses, the study identified four critical success factors (CSFs) for DWSP. The four factors identified are ‘Policy and Government Agency Support of Source Protection’, ‘Catchment Risk Monitoring and Information’, ‘Support of Operational Field Activities’ and ‘Response to Water Quality Threats’. The results of this study provide insight into the approach of grouping of source protection measures to identify a series of targeted CSF for operational source protection programs. Using CSF can aide catchment management agencies in ensuring that the risk level in the catchment is managed effectively and that threats to public health from drinking water are managed appropriately.


2020 ◽  
Vol 10 (3) ◽  
pp. 539-548
Author(s):  
V. M. Jayasooriya ◽  
V. M. M. Perera ◽  
S. Muthukumaran

Abstract Chronic Kidney Disease of uncertain etiology (CKDu) is a fatal disease that causes death from kidney failure due to unknown risk factors and has already affected more than 400,000 people in the rural agricultural landscape (dry zone) of Sri Lanka. The major drinking source in Sri Lanka is groundwater and it is suspected that the pollution of groundwater sources due to agricultural means has a major impact on CKDu. The primary objective of this study is to determine whether rainwater can be used as an alternative safe drinking water source in Girandurukotte area, Sri Lanka, which is known to be an area endemic for CKDu. The physical, chemical, and biological analyses were performed to compare the water quality parameters of three water sources (groundwater, surface water, and rainwater) for Girandurukotte area. The most common storage tanks in polyethylene (PE) and ferrocement (FC) were compared to assess the influence of the material of rainwater tank on water quality. The results showed that there is a significant difference in rainwater in terms of water quality compared to groundwater and surface water. Rainwater in FC and PE tanks showed significant differences (p < 0.05) for some parameters however, they were still within accepted potable drinking water standards.


2013 ◽  
Vol 53 (1) ◽  
pp. 407
Author(s):  
Chris Hewitson ◽  
Eva Dec ◽  
Tony Lines

This peer-reviewed paper examines the risks and responsibilities of water providers and the process resource companies should undertake to document how they will deliver a safe and secure water supply to their employees and contractors, and the communities in which they operate, thereby reducing the risks of water quality incidents and managing the impact to the organisation should an incident occur. Water quality incidents can have major impacts to human health and the brand perception of the resource company supplying the water, and can potentially shutdown resource abstraction. Resource companies have a duty of care to provide a secure and safe drinking water supply. This is reinforced by state health departments directing resource organisations to comply with the Australian Drinking Water Guidelines (ADWG), which were updated in 2011 (National Health and Medical Research Council, 2011). Organisations in the CSG industry experience an additional challenge—managing water by-product from gas extraction. There are drivers for the beneficial use of this water—including irrigation, aquifer recharge and municipal supply—resulting in changes to legislation in Queensland (DERM, 2010) that require a process similar to ADWG recommendations, where beneficial use or disposal may impact potable supplies. The ADWG provides clear guidance to potable water providers—whether they are supplying a few consumers or major towns requiring a Drinking Water Quality Management System (DWQM System). This guidance includes documenting a clear process to securing a clean water source, making the water safe to consume and proving it is safe. Developing a DWQM System enables resource companies to understand issues in supplying drinking water through regular review and improvement, while minimising and managing the health risks to consumers.


Sign in / Sign up

Export Citation Format

Share Document