scholarly journals The economic impact of climate-driven changes in water availability in Switzerland

Water Policy ◽  
2015 ◽  
Vol 17 (5) ◽  
pp. 848-864 ◽  
Author(s):  
Anne-Kathrin Faust ◽  
Camille Gonseth ◽  
Marc Vielle

The broad objective of this study is to estimate the economic impact of changes in water availability due to climate change in Switzerland with a 2050 time horizon. To do so, the sectoral structure of the computable general equilibrium model GEMINI-E3 is being extended. Raw water resources are introduced as a production factor into the model and a drinking water distribution sector is specified for Switzerland to allow for a precise analysis of the economic consequences of restricted water supply. Predictions of water availability in 2050 are taken from a hydrological model and alternative climate change scenarios are considered. Simulations show possible restrictions in water resource availability to increase raw water prices substantially compared to the baseline. However, the global economic impact for Switzerland is rather small due to the low price of raw water in Switzerland and its small value in the benchmark scenario. Finally, the simulation of scenarios featuring alternative levels of endogenous adaptive capacity of the economy highlights the importance of the ability to reduce water losses and to transform production processes to decrease their water intensity in determining the extent of welfare losses provoked by a decrease in water availability.

2016 ◽  
Vol 31 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Angela B. Kuriata-Potasznik ◽  
Sławomir Szymczyk

AbstractIt is predicted that climate change will result in the diminution of water resources available both on global and regional scales. Local climate change is harder to observe and therefore, while counteracting its effects, it seems advisable to undertake studies on pertinent regional and local conditions. In this research, our aim was to assess the impact of a river and its catchment on fluctuations in the water availability in a natural lake which belongs to a post-glacial river and lake system. River and lake systems behave most often like a single interacting hydrological unit, and the intensity of water exchange in these systems is quite high, which may cause temporary water losses. This study showed that water in the analyzed river and lake system was exchanged approx. every 66 days, which resulted from the total (horizontal and vertical) water exchange. Also, the management of a catchment area seems to play a crucial role in the local water availability, as demonstrated by this research, where water retention was favoured by wooded and marshy areas. More intensive water retention was observed in a catchment dominated by forests, pastures and wetlands. Wasteland and large differences in the land elevation in the tested catchment are unfavourable to water retention because they intensify soil evaporation and accelerate the water run-off outside of the catchment. Among the actions which should be undertaken in order to counteract water deficiencies in catchment areas, rational use and management of the land resources in the catchment are most often mentioned.


2016 ◽  
Vol 113 (33) ◽  
pp. 9222-9227 ◽  
Author(s):  
Silvan Ragettli ◽  
Walter W. Immerzeel ◽  
Francesca Pellicciotti

Mountain ranges are the world’s natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority.


2021 ◽  
Vol 48 (6) ◽  
pp. 905-913
Author(s):  
Polyana Comino Redivo ◽  
Luciana Sanches ◽  
Marcelo de Carvalho Alves ◽  
Jhonatan Barbosa da Silva

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1078 ◽  
Author(s):  
Alvaro Sordo-Ward ◽  
Alfredo Granados ◽  
Ana Iglesias ◽  
Luis Garrote ◽  
María Bejarano

We evaluated different management alternatives to enhance potential water availability for agriculture under climate change scenarios. The management goal involved maximizing potential water availability, understood as the maximum volume of water supplied at a certain point of the river network that satisfies a defined demand, and taking into account specified reliability requirements. We focused on potential water availability for agriculture and assumed two types of demands: urban supply and irrigation. If potential water availability was not enough to satisfy all irrigation demands, management measures were applied aiming at achieving a compromise solution between resources and demands. The methodological approach consisted of estimation and comparison of runoff for current and future period under climate change effects, calculation of water availability changes due to changes in runoff, and evaluation of the adaptation choices that can modify the distribution of water availability, under climate change. Adaptation choices include modifying water allocation to agriculture, increasing the reservoir storage capacity, improving the efficiency of urban water use, and modifying water allocation to environmental flows. These management measures were evaluated at the desired points of the river network by applying the Water Availability and Adaptation Policy Analysis (WAAPA) model. We simulated the behavior of a set of reservoirs that supply water for a set of prioritized demands, complying with specified ecological flows and accounting for evaporation losses. We applied the methodology in six representative basins of southern Europe: Duero-Douro, Ebro, Guadalquivir, Po, Maritsa-Evros, and Struma-Strymon. While in some basins, such as the Ebro or Struma-Strymon, measures can significantly increase water availability and compensate for a fraction of water scarcity due to climate change, in other basins, like the Guadalquivir, water availability cannot be enhanced by applying the management measures analyzed, and irrigation water use will have to be reduced.


2013 ◽  
Vol 12 (2) ◽  
pp. 144-164 ◽  
Author(s):  
Inkyo Cheong ◽  
Jose Tongzon

Several initiatives have emerged for regional economic integration in the Asia-Pacific region. The United States has led the negotiations for the Trans-Pacific Partnership agreement, and ASEAN countries have recently started to promote the Regional Comprehensive Economic Partnership. This paper estimates the net economic impact of these initiatives by eliminating the overlapping portions of free trade agreement–related economic gains through the use of a dynamic computable general equilibrium model. The paper analyzes the economic and political feasibility of these two initiatives and assesses their economic impacts. Finally, the paper provides implications for economic integration in East Asia based on a quantitative assessment.


Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 883 ◽  
Author(s):  
Mahtsente Tadese ◽  
Lalit Kumar ◽  
Richard Koech

Understanding the hydrological processes of a watershed in response to climate change is vital to the establishment of sustainable environmental management strategies. This study aimed to evaluate the variability of potential evapotranspiration (PET) and water availability in the Awash River Basin (ARB) under different climate change scenarios and to relate these with long-term drought occurrences in the area. The PET and water availability of the ARB was estimated during the period of 1995–2009 and two future scenarios (2050s and 2070s). The representative concentration pathways (RCP4.5 and RCP8.5) simulations showed an increase in the monthly mean PET from March to August in the 2050s, and all the months in the 2070s. The study also identified a shortage of net water availability in the majority of the months investigated and the occurrence of mild to extreme drought in about 40–50% of the analysed years at the three study locations (Holetta, Koka Dam, and Metehara). The decrease in water availability and an increase in PET, combined with population growth, will aggravate the drought occurrence and food insecurity in the ARB. Therefore, integrated watershed management systems and rehabilitation of forests, as well as water bodies, should be addressed in the ARB to mitigate climate change and water shortage in the area.


Sign in / Sign up

Export Citation Format

Share Document