scholarly journals Adaptation Effort and Performance of Water Management Strategies to Face Climate Change Impacts in Six Representative Basins of Southern Europe

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1078 ◽  
Author(s):  
Alvaro Sordo-Ward ◽  
Alfredo Granados ◽  
Ana Iglesias ◽  
Luis Garrote ◽  
María Bejarano

We evaluated different management alternatives to enhance potential water availability for agriculture under climate change scenarios. The management goal involved maximizing potential water availability, understood as the maximum volume of water supplied at a certain point of the river network that satisfies a defined demand, and taking into account specified reliability requirements. We focused on potential water availability for agriculture and assumed two types of demands: urban supply and irrigation. If potential water availability was not enough to satisfy all irrigation demands, management measures were applied aiming at achieving a compromise solution between resources and demands. The methodological approach consisted of estimation and comparison of runoff for current and future period under climate change effects, calculation of water availability changes due to changes in runoff, and evaluation of the adaptation choices that can modify the distribution of water availability, under climate change. Adaptation choices include modifying water allocation to agriculture, increasing the reservoir storage capacity, improving the efficiency of urban water use, and modifying water allocation to environmental flows. These management measures were evaluated at the desired points of the river network by applying the Water Availability and Adaptation Policy Analysis (WAAPA) model. We simulated the behavior of a set of reservoirs that supply water for a set of prioritized demands, complying with specified ecological flows and accounting for evaporation losses. We applied the methodology in six representative basins of southern Europe: Duero-Douro, Ebro, Guadalquivir, Po, Maritsa-Evros, and Struma-Strymon. While in some basins, such as the Ebro or Struma-Strymon, measures can significantly increase water availability and compensate for a fraction of water scarcity due to climate change, in other basins, like the Guadalquivir, water availability cannot be enhanced by applying the management measures analyzed, and irrigation water use will have to be reduced.

Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Alvaro Sordo-Ward ◽  
Alfredo Granados ◽  
Ana Iglesias ◽  
Luis Garrote

We evaluate alternatives for the management of water for agriculture under climate change in six representative basins of Southern Europe: Duero-Douro, Ebro, Guadalquivir, Po, Maritsa-Evros, and Struma. Management objective is the maximization of water availability, understood as the maximum demand that can be satisfied with a given reliability. We focus on water availability for agriculture. For the sake of simplicity, we assume only two types of demands: urban and irrigation. Water is first allocated to urban demands following an established priority; the remaining resources are allocated to agriculture. If water availability does not satisfy all irrigation demands, management measures are applied with the goal of achieving a balance between resources and demands. We present an analysis of three possible management measures to face water scarcity in a long-term scenario: increasing reservoir storage, improving efficiency of urban water use and modifying water allocation to environmental flows. These management measures are globally evaluated for the selected basins in three representative climate scenarios, comparing their possible range and effectiveness. Although such measures can significantly increase water availability and counterbalance a portion of water scarcity due to climate change in some basins like Ebro or Struma, in other basins, such as Guadalquivir, water availability cannot be enhanced with management measures and irrigation water use must be reduced.


Elem Sci Anth ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Pilar Barría ◽  
Ignacio Barría Sandoval ◽  
Carlos Guzman ◽  
Cristián Chadwick ◽  
Camila Alvarez-Garreton ◽  
...  

Chile is positioned in the 20th rank of water availability per capita. Nonetheless, water security levels vary across the territory. Around 70% of the national population lives in arid and semiarid regions, where a persistent drought has been experienced over the last decade. This has led to water security problems including water shortages. The water allocation and trading system in Chile is based on a water use rights (WURs) market, with limited regulatory and supervisory mechanisms, where the volume to be granted as permanent and eventual WURs is calculated from statistical analyses of historical streamflow records if available, or from empirical estimations if they are not. This computation of WURs does not consider the nonstationarity of hydrological processes nor climatic projections. This study presents the first large sample diagnosis of water allocation system in Chile under climate change scenarios. This is based on novel anthropic intervention indices (IAI), which were computed as the ratio between the total granted water volume to the water availability within 87 basins in north-central and southern Chile (30°S–42°S). The IAI were evaluated for the historical period (1979–2019) and under modeled-based climatic projections (2055–2080). According to these IAI levels, to date, there are 20 out of 87 overallocated basins, which under the assumption that no further WURs will be granted in the future, increases up to 25 basins for the 2055–2080 period. The results show that, to date most of north-central Chilean catchments already have a large anthropic intervention degree, and the increases for the future period occurs mostly in the southern region of the country (approximately 38°S), which has been considered as possible source of water for large water transfer projects (i.e., water roads). These indices and diagnosis are proposed as a tool to help policy makers to address water scarcity under climate change.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 85
Author(s):  
Alfredo Granados ◽  
Alvaro Sordo-Ward ◽  
Bolívar Paredes-Beltrán ◽  
Luis Garrote

Recent trends suggest that streamflow discharge is diminishing in many rivers of Southern Europe and that interannual variability is increasing. This threatens to aggravate water scarcity problems that periodically arise in this region, because both effects will deteriorate the performance of reservoirs, decreasing their reliable yield. Reservoir storage is the key infrastructure to overcome variability and to enhance water availability in semiarid climates. This paper presents an analysis of the role of reservoir storage in preserving water availability under climate change scenarios. The study is focused on 16 major Southern European basins. Potential water availability was calculated in these basins under current condition and for 35 different climatic projections for the period 2070–2100. The results show that the expected reduction of water availability is comparable to the decrease of the mean annual flow in basins with large storage capacity. For basins with small storage, the expected reduction of water availability is larger than the reduction of mean annual flow. Additionally, a sensitivity analysis was carried out by replicating the analysis assuming variable reservoir volumes from 25% to 175% of current storage. The results show that increasing storage capacity attenuates the reduction of water availability and reduces its uncertainty under climate change projections. This feature would allow water managers to develop suitable policies to mitigate the impacts of climate change, thus enhancing the resilience of the system.


2016 ◽  
Vol 113 (33) ◽  
pp. 9222-9227 ◽  
Author(s):  
Silvan Ragettli ◽  
Walter W. Immerzeel ◽  
Francesca Pellicciotti

Mountain ranges are the world’s natural water towers and provide water resources for millions of people. However, their hydrological balance and possible future changes in river flow remain poorly understood because of high meteorological variability, physical inaccessibility, and the complex interplay between climate, cryosphere, and hydrological processes. Here, we use a state-of-the art glacio-hydrological model informed by data from high-altitude observations and the latest climate change scenarios to quantify the climate change impact on water resources of two contrasting catchments vulnerable to changes in the cryosphere. The two study catchments are located in the Central Andes of Chile and in the Nepalese Himalaya in close vicinity of densely populated areas. Although both sites reveal a strong decrease in glacier area, they show a remarkably different hydrological response to projected climate change. In the Juncal catchment in Chile, runoff is likely to sharply decrease in the future and the runoff seasonality is sensitive to projected climatic changes. In the Langtang catchment in Nepal, future water availability is on the rise for decades to come with limited shifts between seasons. Owing to the high spatiotemporal resolution of the simulations and process complexity included in the modeling, the response times and the mechanisms underlying the variations in glacier area and river flow can be well constrained. The projections indicate that climate change adaptation in Central Chile should focus on dealing with a reduction in water availability, whereas in Nepal preparedness for flood extremes should be the policy priority.


2021 ◽  
Vol 48 (6) ◽  
pp. 905-913
Author(s):  
Polyana Comino Redivo ◽  
Luciana Sanches ◽  
Marcelo de Carvalho Alves ◽  
Jhonatan Barbosa da Silva

2015 ◽  
Vol 82 ◽  
pp. 555-565 ◽  
Author(s):  
Ryan Z. Johnston ◽  
Heather N. Sandefur ◽  
Prathamesh Bandekar ◽  
Marty D. Matlock ◽  
Brian E. Haggard ◽  
...  

2020 ◽  
Author(s):  
Marco Mancini ◽  
Chiara Corbari ◽  
Alessandro Ceppi ◽  
Gabriele Lombardi ◽  
Josè Sobrino ◽  
...  

<p>The conflicting use of water is becoming more and more evident, also in regions that are traditionally rich in water. With the world’s population projected to increase to 8.5 billion by 2030, the simultaneous growth in income will imply a substantial increase in demand for both water and food (expected to increase by 70% by 2050). Climate change impacts will further stress the water availability enhancing also its conflictual use. The agricultural sector, the biggest and least efficient water user, accounts for around 24% of total water use in Europe, peaking at 80% in the southern regions, is likely to face important challenges in order to sustain food production and parsimonious use of water.</p><p>The paper shows the development of a system for operative irrigation water management able to monitor and forecast the crop water need reducing the irrigation losses and increasing the water use efficiency. The system couples together satellite and ground data, with pixel wise hydrological soil water balance model using recent scientifically outcomes on soil moisture retrieval from satellite data and hydrological modelling. Discussion on the methodological approach based on the satellite land surface temperature LST, ground evapotranspiration measures, and pixel wise hydrological modelling is provided proving the reliability of the forecasting system and its benefits.</p><p>The activity is part of the European Chinese collaborative project (SIM, Smart Irrigation Modelling, www.sim.polimi.it) which has as main objective the parsimonious use of agricultural water through an operational web tool to reduce the use of water, fertilizer and energy keeping a constant crop yield. The system provides in real-time the present and forecasted irrigation water requirements at high spatial and temporal resolutions with forecast horizons from few up to thirty days, according to different agronomic practices supporting different level of water users from irrigation consortia to single farmers.</p><p>The system is applied in different experimental sites which are located in Italy, the Netherlands, China and Spain, which are characterized by different climatic conditions, water availability, crop types and irrigation schemes. This also thanks to the collaboration of several stakeholders as the Italian ANBI, Capitanata and Chiese irrigation consortia and Dutch Aa and Maas water authority</p><p>The results are shown for two case studies in Italy and in China The Italian ones is the Sud Fortore District of the Capitanata Irrigation consortium which covers an area of about 50’000 hectares with flat topography, hot summer and warm winter, mainly irrigated with pressurized aqueduct. The district is an intensive cultivation area, mainly devoted to wheat, tomatoes and fresh vegetables cultivation The Chinese one is in the Hehie Daman district covering an area of 20000 ha with fixed time flooding irrigation.</p>


Sign in / Sign up

Export Citation Format

Share Document