scholarly journals Mapping land use suitability for development of recharge wells in the Ciliwung watershed, Indonesia

2017 ◽  
Vol 12 (1) ◽  
pp. 166-178
Author(s):  
Nyoman Suwartha ◽  
Ikhwan Maulani ◽  
Cindy Rianti Priadi ◽  
Elzavira Felaza ◽  
Tri Tjahjono ◽  
...  

Rapid population growth and the need to mitigate the impact of rainfall-runoff has made groundwater conservation a significant environmental issue in Indonesia's Ciliwung Watershed. The availability of recharge wells in developed areas is essential for groundwater conservation and runoff reduction. Selection of suitable locations for the construction of recharge wells depends on a combination of factors such as topography, soil layers, land use, and climatology. This study of land suitability for recharge well development in the Ciliwung Watershed, an area of heterogenous land use, employed GPS-based weighted data on technical geology, soil type, soil hydrology group, groundwater level, slope, average rainfall, and land use. Mathematical simulations were performed to develop a land suitability map. The findings indicate that only 2% of the total area (in Cisarua, Bogor) is ideal for the construction of recharge wells, and that 48% of existing recharge wells in the Jakarta area are situated in a suitable zone. The results provide a basis for technical recommendations for future construction of recharge wells in the Ciliwung Watershed.

2011 ◽  
Vol 52 (No. 6) ◽  
pp. 239-244 ◽  
Author(s):  
P. Kovář

The paper is focused on the impact of land use changes on water regime. First, an emphasis was given to what extent the main components of the water balance on the experimental catchment Všeminka (region Vsetínské Hills) were influenced. For this reason, the WBCM-5 model was implemented for the period of 10 years in a daily step with a particular reference to simulate the components of direct runoff and of subsurface water recharge. In the selected years of the period 1990–2000, the major changes were made in land use and also the significant fluctuation of rainfall-runoff regimes were observed (e.g. dry year 1992 and flood year 1997). After WBCM-5 parameter calibration it was found that some water balance components can change in relation to substantial land use changes even up to tens of percent in a balance-consideration, i.e. in daily, monthly and yearly or decade values, namely the components of interception and also of direct runoff and of subsurface water recharge. However, a different situation appears when investigating significant short-term rainfall-runoff processes. There were about seven real flood events analysed using the model KINFIL-2 (time step 0.5 hr) during the same period of about 10 years on the same catchment. Furthermore, some land use change positive or negative scenarios were also analysed there. As opposed to long-term water balance analyses, there was never achieved any greater differences in the hydrograph peak or volume than 10%. Summarising, it is always important to distinguish a possible land use change impact in either long-term balance or short-term runoff consideration, otherwise a misunderstanding might be easily made, as can often be found when commenting on the impact on floods in some mass media.


2009 ◽  
Vol 6 (5) ◽  
pp. 6721-6758 ◽  
Author(s):  
O. V. Barron ◽  
D. W. Pollock ◽  
W. R. Dawes

Abstract. Contributing Catchment Area Analysis (CCAA) is a spatial analysis technique that allows estimation of the hydrological connectivity of relatively flat catchments and the effect of relief depressions on the catchment rainfall-runoff relationship for individual rainfall events. CCAA of the Southern River catchment, Western Australia, showed that catchment contributing area varied from less than 20% to more than 60% of total catchment area for various rainfall events. Such variability was attributed to a compensating effect of relief depressions. CCAA was further applied to analyse the impact of urbanisation on the catchment rainfall-runoff relationship. It was demonstrated that the change in land use resulted in much greater catchment volumetric runoff than expected simply as a result of the increase in proportion of impervious urban surfaces. As urbanisation leads to an increase in catchment hydrological connectivity, the catchment contributing area to the river flow also becomes greater. This effect was more evident for the most frequent rainfall events, when an increase in contributing area was responsible for a 30–100% increase in total volumetric runoff. The impact of urbanisation was greatest in sandy catchments, which were largely disconnected in the pre-development conditions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Anmin Fu ◽  
Yulin Cai ◽  
Tao Sun ◽  
Feng Li

Great efforts have been made to curb soil erosion and restore the natural environment to Inner Mongolia in China. The purpose of this study is to evaluate the impact of returning farmland to the forest on soil erosion on a regional scale. Considering that rainfall erosivity also has an important impact on soil erosion, the effect of land use and land cover change (LUCC) on soil erosion was evaluated through scenario construction. Firstly, the universal soil loss equation (USLE) model was used to evaluate the actual soil erosion (2001 and 2010). Secondly, two scenarios (scenario 1 and scenario 2) were constructed by assuming that the land cover and rainfall-runoff erosivity are fixed, respectively, and soil erosion under different scenarios was estimated. Finally, the effect of LUCC on soil erosion was evaluated by comparing the soil erosion under actual situations with the hypothetical scenarios. The results show that both land use/cover change and rainfall-runoff erosivity change have significant effects on soil erosion. The land use and land cover change initiated by the ecological restoration projects have obviously reduced the soil erosion in this area. The results also reveal that the method proposed in this paper is helpful to clarify the influencing factors of soil erosion.


Author(s):  
Zongxue Xu ◽  
Gang Zhao

Abstract. China is undergoing rapid urbanization during the past decades. For example, the proportion of urban population in Beijing has increased from 57.6 % in 1980 to 86.3 % in 2013. Rapid urbanization has an adverse impact on the urban rainfall-runoff processes, which may result in the increase of urban flood risk. In the present study, the major purpose is to investigate the impact of land use/cover change on hydrological processes. The intensive human activities, such as the increase of impervious area, changes of river network morphology, construction of drainage system and water transfer, were considered in this study. Landsat TM images were adopted to monitor urbanization process based on Urban Land-use Index (ULI). The SWMM model considering different urbanized scenarios and anthropogenic disturbance was developed. The measured streamflow data was used for model calibration and validation. Precipitation with different return periods was taken as model input to analyse the changes of flood characteristics under different urbanized scenarios. The results indicated that SWMM provided a good estimation for storms under different urbanized scenarios. The volume of surface runoff after urbanization was 3.5 times greater than that before urbanization; the coefficient of runoff changed from 0.12 to 0.41, and the ratio of infiltration decreased from 88 to 60 %. After urbanization, the time of overland flow concentration increased while the time of river concentration decreased; the peak time did not show much difference in this study. It was found that the peak flow of 20-year return-period after urbanization is greater than that of 100-year return-period before urbanization. The amplification effect of urbanization on flood is significant, resulting in an increase of the flooding risk. These effects are especially noticeable for extreme precipitation. The results in this study will provide technical support for the planning and management of urban storm water and the evaluation on Low Impact Development (LID) measures.


2019 ◽  
Vol 16 (3) ◽  
Author(s):  
Hasmana Soewandita ◽  
Nana Sudiana

Mount Merapi is a mountain that is classified as active and relatively frequent eruption frequency. The impact caused by the eruption of Mount Merapi classified terrible and the impact on the loss of property, infrastructure to fatalities. Merapi disaster-prone areas covering up areas inhabited and cultivated areas. The purpose of this activity is to provide direction and suitability of land use is associated with a disaster prone area. The method is based on the analytic descriptive field survey and analysis of maps (land use and disaster-prone areas). The analysis showed that the cultivated area is still occupied by the public is directed to land penmggunaan perennials with a combination of food crops. Plants are easy succession directed at plants that have root weevil, because these plants will quickly grow after the impact of the eruption of Merapi. Likewise perennials that have a Poster (grow) back as horticultural crops (Avocado, Lengkeng, Mahony), while the fast-growing plants sengon though but flammable.Gunung Merapi merupakan gunung yang tergolong aktif dan frekwensi erupsi tergolong sering terjadi. Dampak yang ditimbulkan akibat letusan Gunung Merapi tergolong dasyat dan berdampak terhadap kerugian harta benda, infrastruktur hingga korban jiwa. Kawasan rawan bencana Merapi meliputi hingga kawasan yang berpenghuni dan kawasan budidaya (tegalan dan kebun campuran). Tujuan dari kegiatan ini adalah untuk memberikan arahan penggunaan dan kesesuaian lahan dikaitkan dengan kawasan rawan bencana. Metoda yang digunakan adalah diskriptif analitik dengan berdasarkan hasil survey lapang dan analisis peta (penggunaan lahan dan kawasan rawan bencana). Hasil analisis menunjukkan bahwa kawasan budidaya yang masih diokupasi oleh masyarakat diarahkan untuk penggunaan lahan tanaman keras dengan kombinasi tanaman pangan. Tanaman yang mudah suksesi diarahkan pada tanaman yang mempunyai bonggol akar, dikarenakan tanaman ini akan cepat tumbuh setelah terjadi dampak letusan Merapi. Begitu juga tanaman keras yang mempunyai daya trubus (tumbuh) kembali seperti tanaman hortikultura (Alpukat, Lengkeng, Mahoni), sedangkan tanaman sengon meskipun cepat tumbuh akan tetapi mudah terbakar.Keywords: eruption, land use, land suitability


2020 ◽  
Author(s):  
Carla Ferreira ◽  
Barbara Frigione ◽  
Milan Gazdic ◽  
Michelle Pezzagno ◽  
António Ferreira

<p>Soil is a non-renewable resource subject to increasing degradation favoured by human activities, such as the creation of impervious surfaces. Driven by increasing global population, soil sealing became a major challenge due to growing expansion and its impact on decreasing ability of soil to provide ecosystem services. In order to mitigate the environmental and social impacts of sealing, a worldwide interest in greening the cities have been noticed among politicians and stakeholders. Urban green areas provide benefits for the urban water cycle, namely through reducing stormwater runoff and flood hazard. The effectiveness of green areas inside the cities on runoff reduction, is still not well understood. This is partially due to the role of complex landscapes, including distinct urban types (e.g. residential vs commercial) and spatial patterns, on rainfall-runoff processes. This study aims to investigate the impact of different spatial patterns of sealing and green areas on surface runoff. Inspired on the spatial patterns of green areas observed in several Portuguese city centres crossed by rivers, three spatial patterns were investigated: dispersed gardens with a narrow green strip along the stream (SS); small gardens along contours, with a large green strip downslope (HD); linear gardens along the slope, with a large green strip downslope (VD). The impact of these three patterns was assessed through lysimeter experiments, using concrete blocks to simulate sealed surfaces and turfgrass to mimic gardens. All the configurations included 60% sealing and 40% greening, which is the maximum allowed in several Portuguese municipalities for urban areas. The lysimeters have an area of 1.24 m<sup>2</sup> and a depth of 0.15 m, filled with sandy loam soil (1.4 kg/m<sup>3</sup>) bellow the pavement and the turfgrass, and are placed with a 13º-16º slope. The lysimeters were installed in October 2019 and are subject to natural rainfall. After each storm, runoff and leachate measurements have been performed. Three soil moisture sensors were installed per lysimeter, at 10 cm depth, and provide continuous records with 5 min intervals. Rainfall data is collected with a rain gauge installed nearby, with a 5 min resolution. Results show that 40% turfgrass is able to cope with the majority of rainfall and runoff from upslope paved surfaces. Runoff coefficient is typically less than 2% and attained a maximum of 4% during the largest (40 mm) and more intensive storm (9.4 mm/h). Although increasing soil moisture slightly enhances runoff generation, the spatial patterns investigated at small scale did not show significant impacts on rainfall-runoff processes. Turfgrass revealed effective to retain and infiltrate rainfall and runoff from paved surfaces. It may provide an adequate solution to mitigate the impact of urbanization on the water cycle and flood hazard within cities.</p>


Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1775 ◽  
Author(s):  
Jingyi Bu ◽  
Chunxia Lu ◽  
Jun Niu ◽  
Yanchun Gao

Juma River, located in the Midwest of the Haihe River basin, is an important source of water supply to Beijing and Hebei. Over the past decades, the region has been seriously threatened by water shortages owing to complex climate conditions and intensive human activities. This study investigated the runoff characteristics of the Juma River by employing the Soil and Water Assessment Tool (SWAT) and stochastic methods for the period of 1961–2013. Accordingly, the runoff changes attributed to the climate variation and different types of anthropogenic activities (land use change and direct human intervention) were estimated, respectively, in conjunction with the improved quantitative response analysis. The results indicated that the annual runoff of both Zijingguan station and Zhangfang station has decreased significantly at the 0.001 significance level, and reduction rates were −0.054 billion m3 and −0.10 billion m3, respectively. Moreover, the persistency of this trend has been shown for decades (Hurst coefficient > 0.50). The SWAT model was calibrated and validated during the baseline period of 1961–1978. Significant rising temperatures and declining precipitation were the main reasons for runoff reduction, especially during the two periods of 1998–2002 and 2003–2008. Additionally, water withdrawal of Wuyi canal aggravated the runoff reduction and water scarcity conditions in the region. After 2009, the effects of direct human intervention exceeded those of climate change. However, the impact of land use change can be seen as negligible during the study period. Climate change had a greater effect on runoff reduction in winter, while the impact of human activities was more dramatic in summer.


Author(s):  
J. S. Bibby

AbstractThe Department of Agriculture and Fisheries for Scotland (DAFS) have a responsibility to comment on all proposed changes of use in agricultural land in Scotland, whether this be to urban and industrial use or to forestry. The Macaulay Institute for Soil Research, through its Department of Soil Survey, has mapped the soils of Scotland, demonstrating in the process very clear links between the underlying solid and drift geology, and soil development and land use. Two series of interpretative maps have been produced, one at 1:250 000 of the entire country and one at 1:50 000 of the arable lands. These incorporate both climatic and site factors with soil type to provide a classification of agricultural potential. This work will be implemented in Scotland by DAFS as part of their planning-related functions in 1987. This paper describes the links between geology and soil maps, and the approaches taken in both land classification compilation and application. In conclusion, the basis for land suitability maps for specific purposes, now being actively developed to provide further guidance for assessing the impact of land use change in Scotland, is described.


2019 ◽  
Author(s):  
Ashley J. Wright ◽  
David E. Robertson ◽  
Jeffrey P. Walker ◽  
Valentijn R. N. Pauwels

Abstract. Floods continue to devastate societies and their economies. Resilient societies commonly incorporate flood forecasting into their strategy to mitigate the impact of floods. Hydrological models which simulate the rainfall-runoff process are at the core of flood forecasts. To date operational flood forecasting models use areal rainfall estimates that are based on geographical features. This paper introduces a new methodology to optimally blend the weighting of gauges for the purpose of obtaining superior flood forecasts. For a selection of 7 Australian catchments this methodology was able to yield improvements of 15.3 % and 7.1 % in optimization and evaluation periods respectively. Catchments with a low gauge density, or an overwhelming majority of gauges with a low proportion of observations available, are not well suited to this new methodology. Models which close the water balance and demonstrate internal model dynamics that are consistent with a conceptual understanding of the rainfall-runoff process yielded consistent improvement in streamflow simulation skill.


2012 ◽  
Vol 9 (10) ◽  
pp. 11521-11549 ◽  
Author(s):  
L. Q. Dong ◽  
G. X. Zhang ◽  
Y. J. Xu

Abstract. The Nenjiang River Basin (NRB) is an important grain-production region with abundant wetlands in Northeast China. Climate change and anthropogenic activities have dramatically altered the spatial and temporal distribution of regional stream discharge and water resources, which poses a serious threat to wetland ecosystems and sustainable agriculture. In this study, we analyzed 55-yr (1956–2010) rainfall and runoff patterns in the river basin to quantitatively evaluate the impact of human activities on regional hydrology. The long-term hydrologic series were divided into two periods: period I (1956–1974), during which minimum land use change occurred, and period II (1975–2010), during which land use change intensified. Kendall's rank correlation test, non-parametric Pettitt test and precipitation-runoff double cumulative curve (DCC) methods were utilized to identify the trends and thresholds of the annual runoff in the upstream, midstream, and downstream basin areas. Our results showed that the runoff in the NRB has continuously declined in the past 55 yr, and that the effects of climate change and human activities on the runoff reduction varied in the upstream, midstream and downstream area over different time scales. For the entire study period, climate change has been the dominant factor, accounting for 69.6–80.3% of the reduction in the total basin runoff. However, the impact of human activities has been increasing from 19.7% during the 1950s–1970s to 30.4% in the present time. Spatially, the runoff reduction became higher from the upstream to the downstream areas, revealing an increasing threat of water availability to the large wetland ecosystem in the lower river basin. Furthermore, the sustainable development of irrigated agriculture in the NRB will be a threat to the survival of the wetlands.


Sign in / Sign up

Export Citation Format

Share Document