scholarly journals Hydrokinetic turbines for power generation in Nigerian river basins

2019 ◽  
Vol 14 (1) ◽  
pp. 71-80 ◽  
Author(s):  
L. C. Eme ◽  
J. A. Ulasi ◽  
A. I. Alade Tunde ◽  
A. C. Odunze

Abstract This work presents a design for Hydrokinetic Renewable Energy (HRE), for off grid power generation for remote riverine regions in developing nations. The uniqueness of this technique for power generation using streams and other marine currents to generate electric energy is detailed. The problem of the impact of greenhouse gas emissions on the environment, rapid increase in human population, industries, modernization and our lifestyle put immense pressure on most power generation plants and infrastructures. Thus, global warming and carbon footprints of using fossil fuels to generate energy has driven the interest for energy generation from renewable sources. The Upper River Benue and Lower River Niger coastal basins, as well as the River Niger Basin on the Lower Niger sub-basin area of southeastern Nigeria was selected as a case study for the design of the hydrokinetic power generation technology. The results show that for a hydrokinetic turbine the level of power output is directly proportional to the flow velocity. Therefore the cost of its installation is reduced drastically from about $7,900 per installed kW to about $2,500 per kW, is easily assessable, less technical and a familiar motor technology for most of these communities. It is also a predictable form of energy in comparison to other emerging renewable energy fields like wind, solar and wave. Also this form of renewable energy is less harmful to the environment, has a lower noise emission and produces no greenhouse gases or any solid waste. HRE will bring energy security that is essential for the riverine dweller and curb rural urban migration and both improves the rural communities' standard of living and enhances their productivity.

Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8240
Author(s):  
Wadim Strielkowski ◽  
Lubomír Civín ◽  
Elena Tarkhanova ◽  
Manuela Tvaronavičienė ◽  
Yelena Petrenko

The electrical power sector plays an important role in the economic growth and development of every country around the world. Total global demand for electric energy is growing both in developed and developing economies. The commitment to the decarbonization of economies, which would mean replacing fossil fuels with renewable energy sources (RES) as well as the electrification of transport and heating as a means to tackle global warming and dangerous climate change, would lead to a surge in electricity consumption worldwide. Hence, it appears reasonable that the electric power sector should embed the principles of sustainable development into its functioning and operation. In addition, events such as the recent European gas crisis that have emerged as a result of the massive deployment of renewables need to be studied and prevented. This review aims at assessing the role of the renewable energy in the sustainable development of the electrical power sector, focusing on the energy providers and consumers represented both by businesses and households that are gradually becoming prosumers on the market of electric energy. Furthermore, it also focuses on the impact of renewables on the utility side and their benefits for the grid. In addition, it identifies the major factors of the sustainable development of the electrical power sector.


2020 ◽  
Vol 13 (3) ◽  
pp. 77
Author(s):  
A. Areias

Energy produced through biomass, when produced in an efficient and sustainable way, generates a series of environmental, economic and social benefits when compared to the use of fossil fuels. Benefits such as better land management, job creation, efficient use of agricultural areas, provision of modern energy vectors to rural communities, reduction of CO2 emissions, waste control and nutrient recycling can be highlighted. This paper discusses the contributions of energy co-generation, from biomass, to the supplementation of electric energy, reduction of environmental impacts and generation of employment. The aim was to understand the impact of public policies to increase the efficiency of the sugar-energy sector and if there was an increase in employment and manpower in the field, as well as reduction of environmental impacts by reducing the consumption of other less renewable sources of energy within the State from São Paulo. In order to carry out this study, it was necessary to analyze the social, economic and agronomic indicators and the energy plans that aim at the development of the sector, such as the National Energy Plan and the Paulista Energy Plan.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012101
Author(s):  
Javeriya Hasan ◽  
Miljana Horvat ◽  
Charles Riddell ◽  
Rita Wang

Abstract Rapid urbanization, the increasing effects of climate change, the need to reduce fossil fuels’ dependency as well as to improve cities’ resiliency are accelerating the shift towards renewable energy. Additionally, unnecessary complex roof morphologies that are often pushed by suburban divisions’ developers to make houses look more “opulent” and appealing to homebuyers, also impede the smooth integration of active solar technologies. To address this, and to respond to increasing homebuyers’ interest in renewable energy, this study looks to demonstrate how relatively minor design changes could affect the potential for solar generation and create ‘solar ready’ homes without compromising on the aesthetic of the roof morphologies in styles expected by homebuyers. It looked at six different roof morphological forms ranging from small to large houses, a common suburban house archetype in Canada. The roof configurations were remodelled to remove ‘fake dormers’, minimise ridges and valleys, etc. This process helped maximize the south, south-east, south-west, east and west facing surfaces. The results show that these changes could have a significant impact on the magnitude of solar power generation. The power output from a remodelled neighborhood at an optimized orientation exceeded the community’s electricity demand by 24%.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2199
Author(s):  
Taimur Al Shidhani ◽  
Anastasia Ioannou ◽  
Gioia Falcone

The increase in global electricity demand, along with its impact on climate change, call for integrating sustainability aspects in the power system expansion planning. Sustainable power generation planning needs to fulfill different, often contradictory, objectives. This paper proposes a multi-objective optimisation model integrating four objective functions, including minimisation of total discounted costs, carbon emissions, land use, and social opposition. Other factors addressed in the model include renewable energy share, jobs created, mortality rates, and energy diversity, among others. Single-objective linear optimisations are initially performed to investigate the impact of each objective function on the resulting power generation mix. Minimising land use and discounted total costs favoured fossil fuels technologies, as opposed to minimising carbon emissions, which resulted in increased renewable energy shares. Minimising social opposition also favoured renewable energy shares, except for hydropower and onshore wind technologies. Accordingly, to investigate the trade-offs among the objective functions, Pareto front candidates for each pair of objective functions were generated, indicating a strong correlation between the minimisation of carbon emissions and the social opposition. Limited trade-offs were also observed between the minimisation of costs and land use. Integrating the objective functions in the multi-objective model resulted in various non-dominated solutions. This tool aims to enable decision-makers identify the trade-offs when optimising the power system under different objectives and determine the most suitable electricity generation mix.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4447
Author(s):  
Hokey Min ◽  
Yohannes Haile

With a growing demand for safe, clean, and affordable energy, countries across the world are now seeking to create and rapidly develop renewable energy (RE) businesses. The success of these businesses often hinges on their ability to translate RE into sustainable value for energy consumers and the multiple stakeholders in the energy industry. Such value includes low production costs due to an abundance of natural resources (e.g., wind, water, sunlight), and public health benefits from reduced environmental pollution. Despite the potential for value creation, many RE businesses have struggled to create affordable energy as abundant as that which is produced by traditional fossil fuels. The rationale being that traditional RE sources emanating from natural resources tend to rely on unpredictable weather conditions. Therefore, to help RE businesses deliver sustainable value, we should leverage disruptive innovation that is less dependent on natural resources. This paper is one of the first attempts to assess the impact of disruptive innovation on RE business performances based on the survey data obtained from multiple countries representing both emerging and developed economies.


2018 ◽  
Vol 1 (1) ◽  
Author(s):  
Huang Huanhai

The potential crisis of energy and the deterioration of ecological environment make the world's cumbersomedevelopment of renewable energy including new energy, including solar energy. Traditional energy in the coal, oil andnatural gas are evolved from ancient fossils, it is collectively referred to as fossil fuels. As the world's energy needscontinue to increase, fossil fuels will also be depleted, it is necessary to fi nd a new energy to replace the traditionalenergy. Solar energy is a clean renewable energy with mineral energy incomparable superiority. Modern society shouldbe a conservation-oriented society, and social life should also be a life-saving energy. At the same time, Premier WenJiabao also proposed on June 30, 2005 and stressed the need to speed up the construction of a conservation-orientedsociety. And solar energy as an inexhaustible new environmentally friendly energy has become the world's energyresearch work in the world an important issue. Is the world in the economic situation to take a simpler, economical,environmentally friendly and reliable building heating and heating energy-saving measures. This paper summarizes thecurrent global energy status, indicating the importance of solar power and prospects. Details of the various solar powergeneration methods and their advantages, and made a comparison of this power generation parameters. At the sametime pointed out that the diffi culties faced by solar power and solutions, as well as China's solar power of the favorableconditions and diffi culties. The future of China's solar energy made a prospect.


2021 ◽  
Vol 44 (1) ◽  
pp. 11-17
Author(s):  
Sheldon Marshall ◽  
Randy Koon Koon

The integration of renewable energy (RE) into the overall energy mix of Caribbean nations has been increasing in recent times. The volatile nature of the carbon-based industry through fluctuations in prices of fossil fuel based-products renders it necessary to promote an aggressive energy profile transition to renewable energy, as this is crucial to energy security in these vulnerable Small Island Developing States (SIDS). The nation of Barbados has notably understood this reality and, as such, its government has endorsed the approach of 100% RE implementation by 2030. This paper explores three distinctive annual growth rate (AGR) scenarios to assess the impact on the expected power generation, economic and environmental parameters through the period of 2019-2030. Notable findings at a high case scenario for 2030 (at an AGR of 3%) projects a power generation of 1.343 Tera-watts-hour (TWh), which will displace 790,500 barrels of oil equivalent (boe), resulting in an abatement of approximately 0.95 million tons of carbon dioxide into the atmosphere.


2019 ◽  
Vol 11 (4) ◽  
pp. 1035 ◽  
Author(s):  
Hyo-Jin Kim ◽  
Jeong-Joon Yu ◽  
Seung-Hoon Yoo

In an era of energy transition involving an increase in renewable energy and a reduction in coal-fired power generation and nuclear power generation, the role of combined heat and power (CHP) as a bridging energy is highly emphasized. This article attempts to look empirically into the impact of increasing the share of renewable energy in total electricity generation on CHP share in total electricity generation in a cross-country context. Data from 35 countries during the period 2009–2015 were used, and the least absolute deviations estimator was applied to obtain a more robust parameter estimate. The results showed that a 1%p increase in the share of renewable energy significantly increased the CHP share by 0.87%p. Therefore, the hypothesis that CHP serves as bridge energy in the process of energy transition was established.


2019 ◽  
Vol 102 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Yuliana de Jesus Acosta-Silva ◽  
Irineo Torres-Pacheco ◽  
Yasuhiro Matsumoto ◽  
Manuel Toledano-Ayala ◽  
Genaro Martín Soto-Zarazúa ◽  
...  

The growing demand for food and the unstable price of fossil fuels has led to the search for environmentally friendly sources of energy. Energy is one of the largest overhead costs in the production of greenhouse crops for favorable climate control. The use of wind–solar renewable energy system for the control of greenhouse environments reduces fuel consumption and so enhances the sustainability of greenhouse production. This review describes the impact of solar–wind renewable energy systems in agricultural greenhouses.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3455
Author(s):  
Jean-Michel Clairand ◽  
Carlos Álvarez-Bel ◽  
Javier Rodríguez-García ◽  
Guillermo Escrivá-Escrivá

Isolated microgrids, such as islands, rely on fossil fuels for electricity generation and include vehicle fleets, which poses significant environmental challenges. To address this, distributed energy resources based on renewable energy and electric vehicles (EVs) have been deployed in several places. However, they present operational and planning concerns. Hence, the aim of this paper is to propose a two-level microgrid problem. The first problem considers an EV charging strategy that minimizes charging costs and maximizes the renewable energy use. The second level evaluates the impact of this charging strategy on the power generation planning of Santa Cruz Island, Galapagos, Ecuador. This planning model is simulated in HOMER Energy. The results demonstrate the economic and environmental benefits of investing in additional photovoltaic (PV) generation and in the EV charging strategy. Investing in PV and smart charging for EVs could reduce the N P C by 13.58%, but a reduction in the N P C of the EV charging strategy would result in up to 3.12%.


Sign in / Sign up

Export Citation Format

Share Document