scholarly journals Examining the Role of Disruptive Innovation in Renewable Energy Businesses from a Cross National Perspective

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4447
Author(s):  
Hokey Min ◽  
Yohannes Haile

With a growing demand for safe, clean, and affordable energy, countries across the world are now seeking to create and rapidly develop renewable energy (RE) businesses. The success of these businesses often hinges on their ability to translate RE into sustainable value for energy consumers and the multiple stakeholders in the energy industry. Such value includes low production costs due to an abundance of natural resources (e.g., wind, water, sunlight), and public health benefits from reduced environmental pollution. Despite the potential for value creation, many RE businesses have struggled to create affordable energy as abundant as that which is produced by traditional fossil fuels. The rationale being that traditional RE sources emanating from natural resources tend to rely on unpredictable weather conditions. Therefore, to help RE businesses deliver sustainable value, we should leverage disruptive innovation that is less dependent on natural resources. This paper is one of the first attempts to assess the impact of disruptive innovation on RE business performances based on the survey data obtained from multiple countries representing both emerging and developed economies.

Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1289
Author(s):  
M. Anwar H. Khan ◽  
Sophia Bonifacio ◽  
Joanna Clowes ◽  
Amy Foulds ◽  
Rayne Holland ◽  
...  

An accelerating global energy demand, paired with the harmful environmental effects of fossil fuels, has triggered the search for alternative, renewable energy sources. Biofuels are arguably a potential renewable energy source in the transportation industry as they can be used within current infrastructures and require less technological advances than other renewable alternatives, such as electric vehicles and nuclear power. The literature suggests biofuels can negatively impact food security and production; however, this is dependent on the type of feedstock used in biofuel production. Advanced biofuels, derived from inedible biomass, are heavily favoured but require further research and development to reach their full commercial potential. Replacing fossil fuels by biofuels can substantially reduce particulate matter (PM), carbon monoxide (CO) emissions, but simultaneously increase emissions of nitrogen oxides (NOx), acetaldehyde (CH3CHO) and peroxyacetyl nitrate (PAN), resulting in debates concerning the way biofuels should be implemented. The potential biofuel blends (FT-SPK, HEFA-SPK, ATJ-SPK and HFS-SIP) and their use as an alternative to kerosene-type fuels in the aviation industry have also been assessed. Although these fuels are currently more costly than conventional aviation fuels, possible reduction in production costs has been reported as a potential solution. A preliminary study shows that i-butanol emissions (1.8 Tg/year) as a biofuel can increase ozone levels by up to 6% in the upper troposphere, highlighting a potential climate impact. However, a larger number of studies will be needed to assess the practicalities and associated cost of using the biofuel in existing vehicles, particularly in terms of identifying any modifications to existing engine infrastructure, the impact of biofuel emissions, and their chemistry on the climate and human health, to fully determine their suitability as a potential renewable energy source.


2019 ◽  
Vol 102 (2) ◽  
pp. 127-140 ◽  
Author(s):  
Yuliana de Jesus Acosta-Silva ◽  
Irineo Torres-Pacheco ◽  
Yasuhiro Matsumoto ◽  
Manuel Toledano-Ayala ◽  
Genaro Martín Soto-Zarazúa ◽  
...  

The growing demand for food and the unstable price of fossil fuels has led to the search for environmentally friendly sources of energy. Energy is one of the largest overhead costs in the production of greenhouse crops for favorable climate control. The use of wind–solar renewable energy system for the control of greenhouse environments reduces fuel consumption and so enhances the sustainability of greenhouse production. This review describes the impact of solar–wind renewable energy systems in agricultural greenhouses.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3455
Author(s):  
Jean-Michel Clairand ◽  
Carlos Álvarez-Bel ◽  
Javier Rodríguez-García ◽  
Guillermo Escrivá-Escrivá

Isolated microgrids, such as islands, rely on fossil fuels for electricity generation and include vehicle fleets, which poses significant environmental challenges. To address this, distributed energy resources based on renewable energy and electric vehicles (EVs) have been deployed in several places. However, they present operational and planning concerns. Hence, the aim of this paper is to propose a two-level microgrid problem. The first problem considers an EV charging strategy that minimizes charging costs and maximizes the renewable energy use. The second level evaluates the impact of this charging strategy on the power generation planning of Santa Cruz Island, Galapagos, Ecuador. This planning model is simulated in HOMER Energy. The results demonstrate the economic and environmental benefits of investing in additional photovoltaic (PV) generation and in the EV charging strategy. Investing in PV and smart charging for EVs could reduce the N P C by 13.58%, but a reduction in the N P C of the EV charging strategy would result in up to 3.12%.


F1000Research ◽  
2013 ◽  
Vol 2 ◽  
pp. 101 ◽  
Author(s):  
Luigi Fontana ◽  
Vincenzo Atella ◽  
Daniel M Kammen

A strong analogy exists between over/under consumption of energy at the level of the human body and of the industrial metabolism of humanity. Both forms of energy consumption have profound implications for human, environmental, and global health. Globally, excessive fossil-fuel consumption, and individually, excessive food energy consumption are both responsible for a series of interrelated detrimental effects, including global warming, extreme weather conditions, damage to ecosystems, loss of biodiversity, widespread pollution, obesity, cancer, chronic respiratory disease, and other lethal chronic diseases. In contrast, data show that the efficient use of energy—in the form of food as well as fossil fuels and other resources—is vital for promoting human, environmental, and planetary health and sustainable economic development. While it is not new to highlight how efficient use of energy and food can address some of the key problems our world is facing, little research and no unifying framework exists to harmonize these concepts of sustainable system management across diverse scientific fields into a single theoretical body. Insights beyond reductionist views of efficiency are needed to encourage integrated changes in the use of the world’s natural resources, with the aim of achieving a wiser use of energy, better farming systems, and healthier dietary habits. This perspective highlights a range of scientific-based opportunities for cost-effective pro-growth and pro-health policies while using less energy and natural resources.


Author(s):  
Dipti Mayee Majhi ◽  
D. Hota ◽  
L. Nanda

Global energy consumption is increasing at a dramatic rate due to the increase in the world’s population and the quest for improvement of living standards. Most of our energy comes from fossil fuels which cause the problem of global warming due to the emission of greenhouse gases (GHG). As a result, there are many harmful effects such as rise in sea level, drought in tropical regions near the equator, an increase in hurricanes, tornadoes and floods, and the spread of disease. Renewable energy is the energy generated from natural resources such as solar heat and light, wind, rain, tides, waves, and geothermal heat, which are replenished naturally. This paper highlights in particular the impact of power electronics in solving or mitigating the global warming problem and supporting the generation of renewable energy.


2019 ◽  
Vol 9 (3) ◽  
pp. 518 ◽  
Author(s):  
Peicong Luo ◽  
Xiaoying Wang ◽  
Hailong Jin ◽  
Yuling Li ◽  
Xuejiao Yang

Recently, as renewable and distributed power sources boost, many such resources are integrated into the smart grid as a clean energy input. However, since the generation of renewable energy is intermittent and unstable, the smart grid needs to regulate the load to maintain stability after integrating the renewable energy source. At the same time, with the development of cloud computing, large-scale datacenters are becoming potentially controllable loads for the smart grid due to their high energy consumption. In this paper, we propose an appropriate approach to dynamically adjust the datacenter load to balance the unstable renewable energy input into the grid. This could meet the demand response requirements by taking advantage of the variable power consumption of datacenters. We have examined the scenarios of one or more datacenters being integrated into the grid and adopted a stochastic algorithm to solve the problem we established. The experimental results illustrated that the dynamic load management of multiple datacenters could help the smart grid to reduce losses and thus save operational costs. Besides, we also analyzed the impact of the flexibility and the delay of datacenter actions, which could be applied to more general scenarios in realistic environments. Furthermore, considering the impact of the action delay, we employed a forecasting method to predict renewable energy generation in advance to eliminate the extra losses brought by the delay as much as possible. By predicting solar power generation, the improved results showed that the proposed method was effective and feasible under both sunny and cloudy/rainy/snowy weather conditions.


2013 ◽  
Vol 56 (04) ◽  
pp. 103-111 ◽  
Author(s):  
Tanya Christidis ◽  
Claire Paller ◽  
Shannon Majowicz ◽  
Phil Bigelow ◽  
Ashley Wilson ◽  
...  

With the increasing concerns regarding fossil fuels and nuclear energy, greater attention is being placed on alternate renewable energy technologies (RETs) such as wind, solar, and bioenergy. However, implementation of modern RETs has become controversial, as adverse health effects are a major concern. Although local case studies have suggested a relationship between wind turbines and health, there is a gap in the scientific knowledge. Epidemiological studies with adequate data collection tools and analyses are needed, particularly in the Canadian context. We reviewed surveys used in relevant environmental health literature, created a data collection tool for use in populations exposed to wind turbines, and piloted the survey content and distribution method. Our pilot response rate was 25.5% (45/200). The mean age of survey respondents was 57.6 years (SD: 12.76) with 57% of the respondents being female; respondents were not significantly different than the target population with respect to age or sex. The survey and methods presented here can be used in future studies to assess the health impacts of renewable energy technologies.


2020 ◽  
Vol 207 ◽  
pp. 02006
Author(s):  
Nicolay Komitov ◽  
Nicolay Shopov ◽  
Violeta Rasheva

The current century is characterized by an increasing use of renewable energy - wind farms, solar parks, bio fuels, etc. Climate change and rising prices of fossil fuels lead to increased investment in renewable energy. This raises the need to examine the impact of various factors on the efficiency of energy production from renewable energy sources. This is related to the development of adequate models and the implementation of appropriate computer systems to manage and control these processes. The present work presents the main aspects of the modelling of a building heating installation using renewable energy sources - a solar photovoltaic panel and a HHO gas generator. The additional energy needed to heat the building is provided by a pellet boiler. An energy balance of the studied building is made taking into account the external and internal temperatures and energy loss. The computer model was developed in order to build a system for process control in the building’s heating system.


Environments ◽  
2018 ◽  
Vol 5 (10) ◽  
pp. 107 ◽  
Author(s):  
Kevin Warner ◽  
Glenn Jones

Sub-Saharan Africa is home to several of the world’s least developed economies. Additionally, forty percent of the nearly one billion people in this region lack access to basic electricity. There are several initiatives and programs aimed at increasing electricity access, clean cooking fuel, and renewable energy around the world. Economic development efforts have traditionally relied on increasing an economy’s use of fossil fuels. However, global climate change agreements and mitigation efforts are in direct contrast with this approach. As such, future development efforts must fit into the larger energy–population–climate nexus of global sustainability. Here we utilise a quantitative approach to examine three scenarios for development in sub-Saharan Africa and compare the results to nine historical examples of economic development. While no perfect development analogue was found, there are several lessons that can be learned from the last half century of efforts. We find that UN projected population growth in the region is expected to outpace non-renewable energy availability. The population of sub-Saharan Africa, and subsequent projected growth (4 billion by 2100), will represent a significant energy and climate strain on the 21st century world. In a larger sense, the social and economic development of sub-Saharan Africa is likely to be tied to an increase in per capita energy consumption. This increase is not going to come from traditional fossil fuels and will therefore require significant investment in a renewable energy infrastructure.


Sign in / Sign up

Export Citation Format

Share Document