Water Table Management as a Natural Bioremediation Technique of Nitrate Pollution

2002 ◽  
Vol 37 (3) ◽  
pp. 563-576 ◽  
Author(s):  
Abdirashid A. Elmi ◽  
Chandra Madramootoo ◽  
Mohamud Egeh ◽  
Georges Dodds ◽  
Chantal Hamel

Abstract Nitrate-nitrogen (NO3--N) pollution of water resources is a worldwide problem. Field trials were conducted from 1997 to 1998 to investigate the combined impacts of water table management (WTM) and N fertilization rate on soil NO3--N level and concentration of NO3--N in drainage water. Treatments consisted of two water table treatments: free drainage (FD) with open drains at a 1.0-m depth from the soil surface and subirrigation (SI) with a design water table of 0.6 m below the soil surface, and two N fertilizer rates: 200 kg N ha-1 (N200) and 120 kg N ha-1 (N120) in a split-plot design. Subirrigation reduced NO3--N concentration in the soil compared to FD by 37% in the spring of 1997 but not significantly (2%) in 1998; and 45% and 19% in the fall of 1997 and 1998, respectively. Higher rates of fertilization (N200) resulted in greater levels of NO3--N in the soil profile than the N120. Nitrate-N concentrations in drainage water from SI were 74% and 80% lower than those from FD in 1997 and 1998, respectively. Water table management can effectively reduce NO3--N pollution of water.

2020 ◽  
Author(s):  
Bärbel Tiemeyer ◽  
Sebastian Heller ◽  
Sebastian Willi Oehmke ◽  
Ullrich Dettmann

<p>During the last century, drainage turned the majority of the bogs and fens in Germany into productive agricultural land, causing substantial emissions of greenhouse gases (GHG). The project ‘SWAMPS’ focuses both on maintaining the trafficability for conventional intensive grassland use and on the reduction of GHG emissions by managing the groundwater level by submerged drains and blocked ditches. Here, we aim to evaluate the interaction of water table management and a severe mice infestation on the emissions of carbon dioxide (CO<sub>2</sub>), nitrous oxide (N<sub>2</sub>O) and methane (CH<sub>4</sub>).</p><p>We set up two field sites on both fen and bog peat in North-Western Germany. Submerged drains were installed at a distance of 4 to 5 m and with a target ditch level of 45 to 50 cm below mean soil surface. On the parcels with blocked ditches, the target ditch level is adjusted at 30 to 35 cm. The control parcels are drained by ditches and/or drainage pipes. Since 2017, diurnal CO<sub>2</sub> flux measurement campaigns have been realised once every three to four weeks with transparent and opaque chambers and a portable gas analyser. CH<sub>4</sub> and N<sub>2</sub>O samples are taken biweekly and additionally more frequently after fertilizer application.</p><p>However, our experimental design was disrupted when, after an extremely dry summer and a dry and mild winter, the mice population grew strongly in 2019. We monitored both the number of mouse holes and the damage by mice. At the bog site, nearly no grass was left at the control site at the end of the year, while at the fen site, less, but still significant damage was observed. In this year, this was typical for the situation in North-Western Germany, where around 150,000 ha of grassland were severely damaged by mice. The sites with water table management were less effected by mice, but as food became scarce, they started to move into these wetter areas as well.</p><p>Despite higher water levels, CO<sub>2</sub> emissions in 2019 were partially higher than in previous years, especially at those sites affected by mice. With this presentation, we would like to discuss the effects of mice damage on soil respiration and on possibilities to disentangle water management effects from this (experimental and agricultural) calamity.  </p>


2014 ◽  
Vol 43 (2) ◽  
pp. 587-598 ◽  
Author(s):  
C. F. Drury ◽  
C. S. Tan ◽  
T. W. Welacky ◽  
W. D. Reynolds ◽  
T. Q. Zhang ◽  
...  

2008 ◽  
Vol 147 (1) ◽  
pp. 1-8 ◽  
Author(s):  
J. HENKE ◽  
K. SIELING ◽  
W. SAUERMANN ◽  
H. KAGE

SUMMARYImplementation of the EU Nitrate Directive in Germany will result in nitrogen (N) balance surpluses being restricted to 60 kg N/ha averaged over 3 years, starting in 2009. With N surpluses of more than 100 kg N/ha, winter oilseed rape (OSR) is a main contributor to N balance surpluses in OSR-based crop rotations in northern Germany. The exact calculation of N fertilization rates therefore becomes increasingly important in order to meet the target of less than 60 kg N/ha N balance average surplus over 3 years at a farm level. Currently, soil mineral nitrogen (SMN) at the beginning of spring growth is commonly used as an indicator for calculation of N fertilization rates in spring. However, amounts of SMN at the beginning of spring growth under OSR are usually low and canopy N is only taken into account to a very limited extent. This might lead to N fertilization rates exceeding the optimum N fertilization rate (Nopt). In the present study, the effects of SMN in spring and of canopy N in autumn and spring on Nopt were investigated. Multi-site field trials producing different crop canopies, as a result of two sowing dates and two autumn N fertilization levels, with five spring N fertilization levels (0–280 kg N/ha) were carried out in 2005/06 and 2006/07.Nopt in spring was estimated by quadratic response functions using the combine-harvested seed yield data from the spring N fertilization treatments. Regression analyses revealed no relationship between Nopt and SMN at the beginning of spring growth or canopy N at the beginning of spring growth. In contrast, a significant negative correlation between Nopt and canopy N at the end of autumn growth was found. Based on the results of the present study, it is sensible to take autumn canopy N into account when calculating N fertilization rates in spring. If canopy N in autumn is high (>50 kg N/ha), as a consequence, N fertilization rates should be reduced.


1996 ◽  
Vol 76 (2) ◽  
pp. 229-235 ◽  
Author(s):  
C. S. Tan ◽  
C. F. Drury ◽  
J. D. Gaynor ◽  
I. van Wesenbeeck ◽  
M. Soultani

The effect of three water-table depths (30, 60 and 80 cm below the soil surface) and four N rates (0, 45, 90 and 135 kg ha−1) on plant growth, yield and water use were evaluated for corn (Zea mays L.). Research was conducted in a greenhouse, using 36 undisturbed foil columns (20 cm i.d. and 90 cm length) collected with a Meta-Drill vibrating core sampler from a Fox sandy loam soil at Harrow Research Centre. Corn grown in the 80-cm water-table depth had the greatest degree of water stress, as indicated by low volumetric soil water content, low stomatal conductance and transpiration rates, and elevated soil-surface and leaf-surface temperatures. There was a substantial increase in plant dry weight and grain yields as the N rates increased from 0 to 135 kg ha−1 with the 30- and 60-cm water-table depths. Under our experimental conditions, maximum grain yields were obtained with a 60-cm water-table depth. Grain yields were significantly reduced with the 80-cm water-table depth. With this water-table depth, grain yield was also reduced by N addition. Key words: Water-table management, Zea mays, yield, stomatal conductance, leaf temperature


1997 ◽  
Vol 122 (4) ◽  
pp. 491-498 ◽  
Author(s):  
Georges T. Dodds ◽  
Leif Trenholm ◽  
Ali Rajabipour ◽  
Chandra A. Madramootoo ◽  
Eric R. Norris

In a 2-year study (1993-94), tomato (Lycopersicon esculentum Mill. `New Yorker') plants grown in a sandy loam soil in field lysimeters were subjected to four water table depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface). In 1994, precipitation during the flowering stage was far above average and apparently led to waterlogging in the shallowest WTD treatment, while in the drier year (1993), the deepest WTD treatment suffered from drought stress. In general, over the 2 years, the 0.6-m WTD showed the best yields and largest fruit, while the 1.0-m WTD showed the lowest yields and smallest fruit. However, the incidence of catfacing, cracking, and sunscald was generally higher in the 0.6 m WTD treatment and lower in the 1.0-m WTD treatment. Furthermore, fruit firmness was generally greatest for the two deeper WTD than for the shallower WTD. To strike a balance between yield and quality, a WTD of between 0.6- and 0.8-m is recommended for tomato production on sandy loam soils.


2006 ◽  
Vol 41 (1) ◽  
pp. 63-71 ◽  
Author(s):  
Nicolas Stämpfli ◽  
Chandra A. Madramootoo

Abstract Recent studies have shown subirrigation (SI) to be effective in reducing nitrate losses from agricultural tile drainage systems. A field study was conducted from 2001 to 2002 in southwestern Québec to evaluate the effect of SI on total dissolved phosphorus (TDP) losses in tile drainage. In an agricultural field with drains installed at a 1-m depth, a SI system with a design water table depth (WTD) of 0.6 m below the soil surface was compared with conventional free drainage (FD). Subirrigation increased drainage outflow volumes in the autumn, when drains were opened and water table control was interrupted for the winter in the SI plots. Outflows were otherwise similar for both treatments. Throughout the study, the TDP concentrations in tile drainage were significantly higher with SI than with FD for seven out of 17 of the sampling dates for which data could be analyzed statistically, and they were never found to be lower for plots under SI than for plots under FD. Of the seven dates for which the increase was significant, six fell in the period during which water table control was not implemented (27 September 2001 to 24 June 2002). Hence, it appears that SI tended to increase TDP concentrations compared with FD, and that it also had a residual effect between growing seasons. Almost one-third of all samples from the plots under SI exceeded Québec's surface water quality standard (0.03 mg TDP L-1), whereas concentrations in plots under FD were all below the standard. Possible causes of the increase in TDP concentrations in tile drainage with SI are high TDP concentrations found in the well water used for SI and a higher P solubility caused by the shallow water table.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 961
Author(s):  
Meryem Touzani ◽  
Ismail Mohsine ◽  
Jamila Ouardi ◽  
Ilias Kacimi ◽  
Moad Morarech ◽  
...  

The main landfill in the city of Rabat (Morocco) is based on sandy material containing the shallow Mio-Pliocene aquifer. The presence of a pollution plume is likely, but its extent is not known. Measurements of spontaneous potential (SP) from the soil surface were cross-referenced with direct measurements of the water table and leachates (pH, redox potential, electrical conductivity) according to the available accesses, as well as with an analysis of the landscape and the water table flows. With a few precautions during data acquisition on this resistive terrain, the results made it possible to separate the electrokinetic (~30%) and electrochemical (~70%) components responsible for the range of potentials observed (70 mV). The plume is detected in the hydrogeological downstream of the discharge, but is captured by the natural drainage network and does not extend further under the hills.


1997 ◽  
Vol 40 (6) ◽  
pp. 1543-1547 ◽  
Author(s):  
P. L. Havard ◽  
S. O. Prasher ◽  
R. B. Bonnell ◽  
A. Madani

Sign in / Sign up

Export Citation Format

Share Document