Assessment of membrane processes for taste and odour removal

2001 ◽  
Vol 1 (4) ◽  
pp. 19-24
Author(s):  
J.-M. Laîne ◽  
K. Glucina ◽  
L. Malleret ◽  
A. Bruchet ◽  
I. Baudin ◽  
...  

The occurrence of tastes and odours (T&O) in potable water is considered one of the main problems by the drinking water companies. Thus, several treatment processes have been developed over the years to control T&O, including air stripping, activated carbon and oxidation using ozone. However, little information is available in the literature on the use of membranes for T&O removal. Therefore, the objective of this paper is to present potential of membrane processes for the removal of taste and odour-causing compounds. Several membranes were tested including ultrafiltration (UF), UF combined with powdered activated carbon (PAC), nanofiltration (NF) and low pressure reverse osmosis (LP RO) membranes. Combination of UF with PAC was found to be effective for T&O control. The use of NF or LP RO is still unclear in the objective of T&O control.

2005 ◽  
Vol 51 (6-7) ◽  
pp. 257-265 ◽  
Author(s):  
A. Bruchet ◽  
J.M. Laîné

The occurrence of tastes and odors (T&O) in drinking water is considered as one of the main problems by the drinking water companies. Thus, several treatment processes were developed over the years to control T&O including air stripping, activated carbon and oxidation using ozone. However, little information is available in the literature on the use of membranes for T&O removal. Therefore, the objectives of this paper are to present potential of membrane processes for removal of taste and odor causing compounds. Several membranes were tested including ultrafiltration (UF), UF combined with powdered activated carbon (PAC), nanofiltration (NF) and low pressure reverse osmosis (LP RO) membranes. The results of this study indicate that the combination of UF with PAC is effective for T&O control whereas the benefit of NF and LP RO remains unclear for T&O control.


2009 ◽  
Vol 2 (1) ◽  
pp. 79-100 ◽  
Author(s):  
J. Chung ◽  
Y. Yoon ◽  
M. Kim ◽  
S.-B. Lee ◽  
H.-J. Kim ◽  
...  

Abstract. The presence of N-nitrosodimethylamine (NDMA) in drinking water supplies has raised concern over its removal by common drinking water treatment processes. A simple detection method based on scintillation spectroscopy has been used to quantify the concentration of 14C-labeled NDMA at various ratios of sample to scintillation liquid. Without sample pretreatment, the method detection limits are 0.91, 0.98, 1.23, and 1.45 ng/L of NDMA at scintillation intensity ratios of 10:10, 5:15, 15:5, and 2.5:17.5 (sample: scintillation liquid), respectively. The scintillation intensity in all cases is linear (R2>0.99) and is in the range of 0 to 100 ng/L of NDMA. In addition, because scintillation intensity is independent of solution pH, conductivity, and background electrolyte ion types, a separate calibration curve is unnecessary for NDMA samples at different solution conditions. Bench-scale experiments were performed to simulate individual treatment processes, which include coagulation and adsorption by powdered activated carbon (PAC), as used in a drinking water treatment plant, and biosorption, a technique used in biological treatment of waste water. The commonly used coagulation process for particulate control and biosorption is ineffective for removing NDMA (<10% by coagulation and <20% by biosorption). However, high doses of PAC may be applied to remove NDMA.


2016 ◽  
Vol 7 (1) ◽  
pp. 97-102 ◽  
Author(s):  
Am Jang ◽  
Jong-Tae Jung ◽  
Hayoung Kang ◽  
Hyung-Soo Kim ◽  
Jong-Oh Kim

We evaluate the applicability of a reverse osmosis (RO) system that combines powdered activated carbon (PAC) and ultrafiltration (UF) to treat the effluent discharged from tannery wastewater treatment plants. Conventional treatment processes such as neutralization, clariflocculation, and biological processes are used to clean the effluent before feeding to the PAC and UF combined RO system. The efficiency of the combined system was evaluated using the chemical oxygen demand Mn (CODMn), color, pH, turbidity, total nitrogen, total phosphate, and conductivity. The PAC was effective in greatly reducing the CODMn and color. The turbidity and silt density index of the UF permeate satisfied the water quality indices required for the RO feed. The RO system was constantly maintained at approximately 75% RO recovery, and the RO permeate satisfied the water quality requirements for reusing the processed water. Therefore, the PAC-UF combined RO system can be used to process effluent discharged from tannery wastewater treatment plants for reuse.


2009 ◽  
Vol 2 (2) ◽  
pp. 49-55 ◽  
Author(s):  
J. Chung ◽  
Y. Yoon ◽  
M. Kim ◽  
S.-B. Lee ◽  
H.-J. Kim ◽  
...  

Abstract. The presence of N-nitrosodimethylamine (NDMA) in drinking water supplies has raised concern over its removal by common drinking water treatment processes. However, only limited studies have been examined to evaluate the potential removal of NDMA by numerous water treatment technologies within a realistic range (i.e., sub μg/L) of NDMA levels in natural water due to analytical availability. In this study, a simple detection method based on scintillation spectroscopy has been used to quantify the concentration of 14C-labeled NDMA at various ratios of sample to scintillation liquid. Without sample pretreatment, the method detection limits are 0.91, 0.98, 1.23, and 1.45 ng/L of NDMA at scintillation intensity ratios of 10:10, 5:15, 15:5, and 2.5:17.5 (sample: scintillation liquid), respectively. The scintillation intensity in all cases is linear (R2>0.99) and is in the range of 0 to 100 ng/L of NDMA. In addition, because scintillation intensity is independent of solution pH, conductivity, and background electrolyte ion types, a separate calibration curve is unnecessary for NDMA samples at different solution conditions. Bench-scale experiments were performed to simulate individual treatment processes, which include coagulation and adsorption by powdered activated carbon (PAC), as used in a drinking water treatment plant, and biosorption, a technique used in biological treatment of waste water. The results show that coagulation and biosorption may not be appropriate mechanisms to remove NDMA (i.e., hydrophilic based on its low octanol-water partitioning coefficient, Log Kow=0.57). However, relatively high removal of NDMA (approximately 50%) was obtained by PAC at high PAC dosages and longer contact times.


Water ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 532 ◽  
Author(s):  
Bing-Tian Li ◽  
Zhuo Chen ◽  
Wen-Long Wang ◽  
Ying-Xue Sun ◽  
Tian-Hui Zhou ◽  
...  

2018 ◽  
Vol 4 (2) ◽  
pp. 315-324 ◽  
Author(s):  
Fangshu Qu ◽  
Zhongsen Yan ◽  
Hao Wang ◽  
Xiaobo Wang ◽  
Heng Liang ◽  
...  

For decentralized drinking water treatment in rural areas, a hybrid process of biological activated carbon (BAC) filtration and ultrafiltration (UF) was applied to obtain potable water.


2011 ◽  
Vol 45 (9) ◽  
pp. 2954-2964 ◽  
Author(s):  
Lionel Ho ◽  
Paul Lambling ◽  
Heriberto Bustamante ◽  
Phil Duker ◽  
Gayle Newcombe

Sign in / Sign up

Export Citation Format

Share Document