Rejection of organic micropollutants by high pressure membranes: comparison of bench-scale versus single element tests

2006 ◽  
Vol 6 (4) ◽  
pp. 107-116
Author(s):  
T.U. Kim ◽  
C. Bellona ◽  
P. Xu ◽  
J. Drewe ◽  
G. Amy

There has been considerable information reported on rejection of trace organic compounds from pilot-scale and full-scale experiments with reverse osmosis (RO) and nanofiltration (NF), but this information has limited value in predicting the rejection of these compounds by high-pressure membranes. The goal of this research is to define relationships between compound properties, membrane properties, and operational conditions, e.g. pressure, recovery, affecting trace organic compound rejection, comparing bench-scale recirculation tests and bench-scale single-pass tests. In addition, bench-scale results are compared against single element tests to ascertain scale-up effects.

2005 ◽  
Vol 51 (6-7) ◽  
pp. 335-344 ◽  
Author(s):  
T.-U. Kim ◽  
G. Amy ◽  
J.E. Drewes

High-pressure membranes, encompassing reverse osmosis (RO), nanofiltration (NF), and low-pressure RO, may provide an effective treatment barrier for trace organic compounds including disinfection by-products (DBPs), pesticides, solvents, endocrine disrupting compounds (EDCs) and pharmaceutically active compounds (PhACs). The objective is to develop a mechanistic understanding of the rejection of trace organic compounds by high-pressure membranes, based on an integrated framework of compound properties, membrane properties, and operational conditions. Eight trace organic compounds, four DBPs and four chlorinated (halogenated) solvents, are being emphasized during an initial study, based on considerations of compound properties, occurrence, and health effects (regulations). Four polyamide FilmTec membranes; three reverse osmosis/RO (BW-400, LE-440, XLE-440) and one nanofiltration/NF (NF-90); are being characterized according to pure water permeability (PWP), molecular weight cutoff (MWCO), hydrophobicity (contact angle), and surface charge (zeta potential). It is noteworthy that rejections of compounds of intermediate hydrophobicity by the candidate membranes were observed to be less than salt rejections reported for these membranes, suggesting that transport of these solutes through these membranes is facilitated by solute-membrane interactions. We are continuing with diffusion cell measurements to describe solute-membrane interactions by estimation of diffusion coefficients through membranes pores, either hindered or facilitated.


1999 ◽  
Vol 40 (8) ◽  
pp. 137-143 ◽  
Author(s):  
R. G. Penetra ◽  
M. A. P. Reali ◽  
E. Foresti ◽  
J. R. Campos

This paper presents the results of a study performed with a lab-scale dissolved-air flotation (LSDAF) unit fed with previously coagulated effluent from a pilot scale up-flow anerobic sludge blanket (UASB) reactor treating domestic sewage. Physical operational conditions for coagulation (rapid mix) and flocculation/flotation were maintained constant. Chemical (FeCl3) dosages ranged from 30 to 110 mg.l−1. The effect of pH was also verified in the range of 5.1 to 7.6 for each dosage. Best results were achieved for 65 mg.l−1 of FeCl3 and pH values between 5.3 and 6.1. For these conditions, the removal efficiencies obtained in the LSDAF unit were: between 87% and 91% for chemical oxygen demand (COD), between 95% and 96% for total phosphate (TP), 94% for total suspended solids (TSS), between 96% and 97% for turbidity (TU), between 90% and 93% for apparent color (AC) and more than 96% for sulfide (S). For the UASB-DAF system, global efficiencies would be around 98% for COD, 98% for TP, 98.4% for TSS, 99.3% for TU and 98% for AC. The stripped gases treatment is desirable.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3275
Author(s):  
Philipp Otter ◽  
Katharina Mette ◽  
Robert Wesch ◽  
Tobias Gerhardt ◽  
Frank-Marc Krüger ◽  
...  

A large variety of Advanced Oxidation Processes (AOPs) to degrade trace organic compounds during water treatment have been studied on a lab scale in the past. This paper presents the combination of inline electrolytic chlorine generation (ECl2) with low pressure UV reactors (UV/ECl2) in order to allow the operation of a chlorine-based AOP without the need for any chlorine dosing. Lab studies showed that from a Free Available Chlorine (FAC) concentration range between 1 and 18 mg/L produced by ECl2 up to 84% can be photolyzed to form, among others, hydroxyl radicals (OH) with an UV energy input of 0.48 kWh/m3. This ratio could be increased to 97% by doubling the UV energy input to 0.96 kWh/m3 and was constant throughout the tested FAC range. Also the achieved radical yield of 64% did not change along the given FAC concentration range and no dependence between pH 6 and pH 8 could be found, largely simplifying the operation of a pilot scale system in drinking water treatment. Whereas with ECl2 alone only 5% of benzotriazoles could be degraded, the combination with UV improved the degradation to 89%. Similar results were achieved for 4-methylbenzotriazole, 5-methylbenzotriazole and iomeprol. Oxipurinol and gabapentin were readily degraded by ECl2 alone. The trihalomethanes values were maintained below the Germany drinking water standard of 50 µg/L, provided residual chlorine concentrations are kept within the permissible limits. The here presented treatment approach is promising for decentralized treatment application but requires further optimization in order to reduce its energy requirements.


2011 ◽  
Vol 45 (19) ◽  
pp. 8483-8490 ◽  
Author(s):  
Nathan T. Hancock ◽  
Pei Xu ◽  
Dean M. Heil ◽  
Christopher Bellona ◽  
Tzahi Y. Cath

2010 ◽  
Vol 2010 (13) ◽  
pp. 4132-4145
Author(s):  
Eric R. V. Dickenson ◽  
Jörg E. Drewes ◽  
Tanja Rauch-Williams ◽  
Andrew Salveson ◽  
Katherine Hyland ◽  
...  

2018 ◽  
Vol 141 ◽  
pp. 65-73 ◽  
Author(s):  
Marc Sauchelli ◽  
Giuseppe Pellegrino ◽  
Arnout D'Haese ◽  
Ignasi Rodríguez-Roda ◽  
Wolfgang Gernjak

1982 ◽  
Vol 14 (9-11) ◽  
pp. 1269-1277
Author(s):  
John M Sidwick

The paper considers some of the problems of the scale-up of wastewater treatment processes; from bench-scale to pilot-scale, and from pilot-scale to full-scale. An attempt is made to put the question of scale-up problems into perspective by reference to the experience of the author and the work of others reported in the literature.


Author(s):  
Heidi Ha¨sa¨ ◽  
Ari-Pekka Kirkinen ◽  
Antti Tourunen ◽  
Timo Hyppa¨nen ◽  
Jaakko Saastamoinen ◽  
...  

The equipment scale-up towards larger CFB units requires accurate knowledge of the process and combustion behavior of fuels. Unit sizes of 300 MWe are in operation and plans for larger units have been made. Shift from natural circulation to once through steam cycle requires more precise knowledge of the dynamic behavior of the fuel since there is no steam drum. The combustion of inhomogeneous fuels, as well as, special demands for dynamic process behavior poses new challenges to boiler manufactures. Nowadays, dynamic models are used to develop and analyze the dynamic behavior of the combustion process. Testing all the dynamic changes in the full-scale reactor would be both expensive and risky. Therefore, bench and pilot scale experiments, combined with dynamic models of the combustion processes, give a good basis to study behavior of larger scale units. At the same time models also increase knowledge of different process relations. The main objective of this paper is to present results of scale-up experiments from the bench scale, via pilot scale, to full-scale boilers. Further, how the combustion and reactivity of fuels in the full-scale boilers can be studied with the aid of small-scale experiments and simulations. Dynamic experiments were carried out with three reactors of different scale. Calculation and simulation models have been developed to illustrate the combustion in the reactors; e.g. heat release profiles, fuel reactivity and particle size distribution. Results from the dynamic experiments are used to adjust the computer models.


Sign in / Sign up

Export Citation Format

Share Document