Nutrients removal mechanisms in high rate algal pond treating rural domestic sewage in East China

2006 ◽  
Vol 6 (6) ◽  
pp. 43-50 ◽  
Author(s):  
Q. Zhou ◽  
S.L. He ◽  
X.J. He ◽  
X.F. Huang ◽  
B. Picot ◽  
...  

This study focused on the evaluation of performance and mechanisms of a high-rate algal pond system (HRAP System) in nitrogen and phosphorus removal for rural domestic sewage treatment. A pilot scale HRAP System was located at Yangzhu Village, Jiangsu Province, east China, with treatment processes including a septic tank, two stages of HRAPs and an aquatic pond. Results showed that the HRAP System had a good performance in nutrient removal, especially in NH+4-N removal. Total removal efficiencies of COD, TN, NH+4-N and TP were 80, 51.8, 90.2 and 52.1%, respectively. About 61.6% of NH+4-N in the 1st-stage HRAP and 70.9% in the 2nd-stage HRAP were transformed into NO−3-N and NO2−-N through nitrification, and the nitrogen losses via ammonia volatilization was only 2.7% (for 1st-stage HRAP) and 8.8% (for 2nd-stage HRAP). The other 35.7% and 20.3% of NH+4-N removal were achieved by algae assimilation respectively. About 98.0% (for 1st-stage HRAP) and 84.8% (for 2nd-stage HRAP) removal of TN were attributed to algae sedimentation, while those through ammonia volatilization were only 2.0% (for 1st-stage HRAP) and 15.4% (for 2nd-stage HRAP), respectively. Therefore, the main mechanisms of NH+4-N removal in HRAP were nitrification and algae assimilation, and TN was mainly removed by algae sedimentation. About 50.7% (for 1st-stage HRAP) and 53.1% (for 2nd-stage HRAP) of phosphorus in the deposit were organic phosphates respectively, only 20.7% and 27.7% were calcium-bound and magnesium-bound phosphates. The removal mechanism of TP in HRAP could be mainly attributed to algae assimilation in forms of organic phosphate, and chemical precipitation in forms of calcium-bound and magnesium-bound.

2014 ◽  
Vol 69 (7) ◽  
pp. 1410-1418 ◽  
Author(s):  
Weijie Guo ◽  
Zhu Li ◽  
Shuiping Cheng ◽  
Wei Liang ◽  
Feng He ◽  
...  

To examine the performance of a constructed wetland system on stormwater runoff and domestic sewage (SRS) treatment in central east China, two parallel pilot-scale integrated constructed wetland (ICW) systems were operated for one year. Each ICW consisted of a down-flow bed, an up-flow bed and a horizontal subsurface flow bed. The average removal rates of chemical oxygen demand (CODCr), total suspended solids (TSS), ammonia (NH4+-N), total nitrogen (TN) and total phosphorus (TP) were 63.6, 91.9, 38.7, 43.0 and 70.0%, respectively, and the corresponding amounts of pollutant retention were approximately 368.3, 284.9, 23.2, 44.6 and 5.9 g m−2 yr−1, respectively. High hydraulic loading rate (HLR) of 200 mm/d and low water temperatures (<15 °C) resulted in significant decrease in removals for TP and NH4+-N, but had no significant effects on removals of COD and TSS. These results indicated that the operation of this ICW at higher HLR (200 mm/d) might be effective and feasible for TSS and COD removal, but for acceptable removal efficiencies of nitrogen and phosphorus it should be operated at lower HLR (100 mm/d). This kind of ICW could be employed as an effective technique for SRS treatment.


1990 ◽  
Vol 22 (1-2) ◽  
pp. 305-316 ◽  
Author(s):  
G. R. Dillon ◽  
V. K. Thomas

The BIOCARBONE process is a recently developed method for wastewater treatment. High concentrations of active biomass attach to an expanded shale medium in an aerated, packed-bed filter. High-rate biological treatment and in-situ removal of suspended solids are claimed as advantages of the process. The pilot-scale evaluation aimed to assess the performance of the process and its economic feasibility for use in the UK. Carbonaceous oxidation of settled sewage and tertiary nitrification of secondary effluent were investigated in two pilot-scale reactors. Carbonaceous oxidation produced a good-quality effluent at volumetric loading rates up to 4.1 kg BOD5/m3.d (9.2 kg COD/m3,d). Automatic backwashing of the filter was required and problems were encountered with blockages of the process aeration grid. Tertiary nitrification achieved greater than 90% ammoniacal nitrogen (NH3-N) removal at volumetric loading rates up to 0.58 kg NH3-N/m3.d (0.63 kg KJN/m3.d). The economic evaluation indicated that costs of sewage treatment using the BIOCARBONE process would be comparable to those of the activated sludge process for sewage treatment works greater than 50,000 population equivalent. The results show that the BIOCARBONE process is suitable for both the carbonaceous oxidation of settled sewage and the tertiary nitrification of secondary effluent. The process may be an economic option for large sewage treatment works in the UK.


2016 ◽  
Vol 73 (9) ◽  
pp. 2150-2158 ◽  
Author(s):  
D. Seuntjens ◽  
B. L. M. Bundervoet ◽  
H. Mollen ◽  
C. De Mulder ◽  
E. Wypkema ◽  
...  

Energy autarky of sewage treatment plants, while reaching chemical oxygen demand (COD) and N discharge limits, can be achieved by means of shortcut N-removal. This study presents the results of a shortcut N-removal pilot, located at the biological two-‘stage (high/low rate) wastewater treatment plant of Breda, The Netherlands. The pilot treated real effluent of a high-rate activated sludge (COD/N = 3), fed in a continuous mode at realistic loading rates (90–100 g N/(m3·d)). The operational strategy, which included increased stress on the sludge settling velocity, showed development of a semi-granular sludge, with average particle size of 280 μm (ø4,3), resulting in increased suppression of nitrite-oxidizing bacteria. The process was able to remove part of the nitrogen (51 ± 23%) over nitrite, with COD/N removal ratios of 3.2 ± 0.9. The latter are lower than the current operation of the full-scale B-stage in Breda (6.8–9.4), showing promising results for carbon-efficient N-removal, while producing a well settling sludge (SVI30 < 100 mL/g).


2003 ◽  
Vol 48 (2) ◽  
pp. 81-87 ◽  
Author(s):  
R.J. Davies-Colley ◽  
R.J. Craggs ◽  
J.W. Nagels

“Advanced” pond systems (APS) have the potential for improving treatment, including disinfection, over conventional WSPs. Disinfection in a pilot scale APS at Ngatea, New Zealand was studied. This system comprises a high-rate algal pond (HRP) that optimises growth of settleable colonial green algae, followed by an algal settling pond (ASP) that removes much of the nutrients and solids as non-noxious algal sludge, and then a maturation pond (MP) for effluent polishing. Monitoring of this pilot-scale system over 2 years showed excellent overall removal of E. coli (average of 2000-fold reduction), with approximately 1 log removal in each of the three stages. Experiments in the pilot scale HRP suggest that most E. coli removal in this stage is inactivation by sunlight exposure, but with an important contribution from continuous dark processes. Preliminary experiments on the pilot scale algal settling pond (APS) suggest the combined effect of sedimentation of bacteria and sunlight disinfection of the (clarified) supernatant water.


1994 ◽  
Vol 30 (6) ◽  
pp. 31-40 ◽  
Author(s):  
Hiroyshi Emori ◽  
Hiroki Nakamura ◽  
Tatsuo Sumino ◽  
Tadashi Takeshima ◽  
Katsuzo Motegi ◽  
...  

For the sewage treatment plants near rivers and closed water bodies in urbanized areas in Japan and European countries, there is a growing demand for introduction of advanced treatment processes for nitrogen and phosphorus from the viewpoints of water quality conservation and environmental protection. In order to remove nitrogen by the conventional biological treatment techniques, it is necessary to make a substantial expansion of the facility as compared with the conventional activated sludge process. In such urbanized districts, it is difficult to secure a site and much capital is required to expand the existing treatment plant. To solve these problems, a compact single sludge pre-denitrification process using immobilized nitrifiers was developed. Dosing the pellets, which are suitable for nitrifiers growth and physically durable, into the nitrification tank of single sludge pre-denitrification process made it possible to perform simultaneous removal of BOD and nitrogen in a retention time equal to that in the conventional activated sludge process even at the low water temperature of about 10 °C. The 3,000 m3/d full-scale conventional activated sludge plant was retrofitted and has been successfully operated.


2020 ◽  
Vol 81 (9) ◽  
pp. 2023-2032
Author(s):  
Jingqing Gao ◽  
Lei Yang ◽  
Rui Zhong ◽  
Yong Chen ◽  
Jingshen Zhang ◽  
...  

Abstract The environmental problems related to rural domestic sewage treatment are becoming increasingly serious, and society is also concerned about them. A baffled vertical flow constructed wetland (BVFCW) is a good choice for cleaning wastewater. Herein, a drinking-water treatment sludge-BVFCW (D-BVFCW) parallel with ceramsite-BVFCW (C-BVFCW) planted with Oenanthe javanica (O. javanica) to treat rural domestic sewage was investigated, aiming to compare nitrogen and phosphorus removal efficiency in different BVFCWs. A removal of 23.9% NH4+-N, 24.6% total nitrogen (TN) and 76.7% total phosphorus (TP) occurred simultaneously in the D-BVFCW; 56.4% NH4+-N, 60.8% TN and 55.2% TP respectively in the C-BVFCW. The root and plant height increased by an average of 7.9 cm and 8.3 cm, respectively, in the D-BVFCW, and by 0.7 cm and 1.1 cm, respectively, in the C-BVFCW. These results demonstrate that the D-BVFCW and C-BVFCW have different effects on the removal of N and P. The D-BVFCW mainly removed P, while C-BVFCW mainly removed N.


2007 ◽  
Vol 51 (1) ◽  
pp. 237-247 ◽  
Author(s):  
Arnaldo Sarti ◽  
Marcelo Loureiro Garcia ◽  
Marcelo Zaiat ◽  
Eugenio Foresti

2015 ◽  
Vol 39 (2) ◽  
pp. 341-352 ◽  
Author(s):  
Flávia Talarico Saia ◽  
Theo S. O. Souza ◽  
Rubens Tadeu Delgado Duarte ◽  
Eloisa Pozzi ◽  
Débora Fonseca ◽  
...  

2011 ◽  
Vol 183-185 ◽  
pp. 432-436
Author(s):  
Xia Wang ◽  
Yong Qiang Wu

On the up-flow biological aerated filter to remove COD and NH3-N were studied the effect and contrast in various stages of finding the optimal operating conditions, so as to achieve energy conservation, the purpose of reducing operating costs. Through experiment studied that the variation of air-water ratio, hydraulic loading, organic concentration in the removal of COD and NH3-N effects, observe and analyse the change of COD and NH3-N removal and the characteristics of microorganisms of filter’s different height. The results showed that COD and NH3-N removal are high under the condition of air-water ratio 4:1~5:1, hydraulic loading 1~2 m3/ (m2●h), organic concentration 300~400 mg/L. The concentration of COD and NH3-N of effluent which are treated by biological aerated filter can meet with second degree discharging standards.


Sign in / Sign up

Export Citation Format

Share Document