Adsorption of EDCs/PPCPs from drinking water by submicron-sized powdered activated carbon

2011 ◽  
Vol 11 (6) ◽  
pp. 711-718 ◽  
Author(s):  
Y. Wang ◽  
G. Y. Rao ◽  
J. Y. Hu

For the purpose of enhancing the adsorption of Endocrine Disrupting Compounds (EDCs) and Pharmaceuticals and Personal Care Products (PPCPs) from drinking water, commercially available powdered activated carbon (PAC, 40 μm) was further ground to produce submicron-sized powdered activated carbon (SPAC, 0.72 μm). Compared with PAC, the surface area and total pore volume of SPAC were improved. Kinetics data showed that the adsorption of EDCs/PPCPs by SPAC was faster than that by PAC. The adsorption processes of two target EDCs/PPCPs on both SPAC and PAC could be fitted by the pseudo-second order kinetics model. The Langmuir equation described the adsorption isotherm well and the maximum adsorption capacity of SPAC for bisphenol A and carbamazepine could be calculated as 320.54 and 133.33 μg/mg respectively.

2002 ◽  
Vol 74 (1) ◽  
pp. 3-12 ◽  
Author(s):  
M.L. Boerjan ◽  
S. Freijnagel ◽  
S.M. Rhind ◽  
G.A.L. Meijer

AbstractChemical compounds that mimic or block some of the actions of the steroid hormone oestradiol, have created public concern primarily because of potential adverse reproductive effects in wildlife and humans. Many studies, in vivo and in vitro, have revealed abnormal reproductive function following exposure to these compounds. The number of chemicals known to have the potential to modulate endocrine functions is increasing. In contrast to humans and wildlife, the potential reproductive effects of exposure of domestic animals to endocrine disrupting compounds (EDC) have been studied little. The aim of this overview is to evaluate the possible contribution of EDC to reproductive failure in domestic ruminants.Sources and classes of EDC are discussed as well as their structure and the modes of hormone disruption. Endocrine disrupting agents may interfere with the reproductive processes of both males and females at several points of the reproductive cycle and through a range of physiological mechanisms. Extrapolating from the results obtained with laboratory animals, the mechanisms whereby infertility in domestic ruminants might be expressed by exposure to EDC through contaminated food and drinking water are addressed.A preliminary risk assessment is included and it is concluded that under certain circumstances there may be a significantly enhanced intake of oestrogenic hormones and EDC through sewage-contaminated water or soil-contaminated herbage. The physiological consequences for domestic ruminants of EDC ingestion, at the rates estimated, are largely unknown. However, the levels of exposure to oestrogenic hormones and phthalates in grazing ruminants are such that when studying fertility problems in high-yielding dairy cattle the impacts of exposure to endocrine disruptors via the food and drinking water cannot be neglected.


2015 ◽  
Vol 1 (2) ◽  
pp. 170
Author(s):  
Sutrisno ◽  
Elizabeth Tjahjadarmawan ◽  
Fifi

 ABSTRACT This research is focused on characterization of activated carbon from solid waste CPO industries and applying for treatments of gambut water for iron removal in aqueous media. Key parameters in the present study include TSS, DO, pH and total phenol is also determinated. Methods of sampling and analytical techniques for measuring key parameters are by using extended method. The small model has been developed by combining of the composting and adsorption technology.  The coagulant material such as filter alum, soda caustic, and calcium hypochlorite in any ratios are varied and the optimum condition is achieved. The activated carbon is used as adsorbent by using column model. The overall results show that after coagulation and adsorption processes the total iron, TSS, DO and pH are under threshold levels (Indonesian Regulation) and suitable for drinking water meanwhile other parameters are still uncovered in this investigation. Tentatively, it can be concluded that the proposed gambit water design has achieved the optimum condition. A further study on the improvement of the treatment design and service time for adsorption process is still in progress. Keywords : total iron, gambut water, activated carbon, combining model.


2012 ◽  
Vol 164 ◽  
pp. 297-301 ◽  
Author(s):  
Wei Fang Dong ◽  
Li Hua Zang ◽  
Qing Chao Gong ◽  
Cun Cun Chen ◽  
Cai Hong Zheng ◽  
...  

Low cost carbonaceous materials were evaluated for their ability to remove phenol from wastewater. The effects of adsorbents dosage, contact time and maximum adsorption capacity were investigated for granular activated carbon, powdered activated carbon, petroleum coke and multi-walled carbon nanotube (MWNT). Equilibrium studies were conducted in 50mg/L initial phenol concentration, solution pH of 5 and at temperature of 23°C. The results showed the adsorption process was fast and it reached equilibrium in 3 h. Petroleum coke and MWNT had poor adsorption which could reach the removal efficiency of phenol with 43.18% and 36.64% respectively. The granular activated carbon possessed good adsorption ability to phenol with 96.40% at the optimum dosage 5g and optimum time 90min.The powdered activated carbon was an effective adsorbent with a maximum adsorption capacity of 42.32 mg/g.


2011 ◽  
Vol 45 (9) ◽  
pp. 2954-2964 ◽  
Author(s):  
Lionel Ho ◽  
Paul Lambling ◽  
Heriberto Bustamante ◽  
Phil Duker ◽  
Gayle Newcombe

2015 ◽  
Vol 72 (6) ◽  
pp. 983-989 ◽  
Author(s):  
Zheng-ji Yi ◽  
Jun Yao ◽  
Yun-fei Kuang ◽  
Hui-lun Chen ◽  
Fei Wang ◽  
...  

The excessive discharge of Pb(II) into the environment has increasingly aroused great concern. Adsorption is considered as the most effective method for heavy metal removal. Chinese walnut shell activated carbon (CWSAC) was used as an adsorbent for the removal of Pb(II) from aqueous solution. Batch experiments were conducted by varying contact time, temperature, pH, adsorbent dose and initial Pb(II) concentration. Adsorption equilibrium was established within 150 min. Although temperature effect was insignificant, the Pb(II) adsorption was strongly pH dependent and the maximum removal was observed at pH 5.5. The Pb(II) removal efficiency increased with increasing CWSAC dosage up to 2.0 g/L and reached a maximum of 94.12%. Langmuir and Freundlich adsorption isotherms were employed to fit the adsorption data. The results suggested that the equilibrium data could be well described by the Langmuir isotherm model, with a maximum adsorption capacity of 81.96 mg/g. Adsorption kinetics data were fitted by pseudo-first- and pseudo-second-order models. The result indicated that the pseudo-first-order model best describes the adsorption kinetic data. In summary, CWSAC could be a promising material for the removal of Pb(II) from wastewater.


2009 ◽  
Vol 7 (2) ◽  
pp. 224-243 ◽  
Author(s):  
M. F. Rahman ◽  
E. K. Yanful ◽  
S. Y. Jasim

Endocrine disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs) are a group of chemical compounds with diverse physical and chemical properties. Recent studies have indicated undesired effects of EDCs and PPCPs at their reported trace concentrations (ng l−1 to μg l−1). This paper reviews the current knowledge on the sources, properties, occurrence and health impacts of EDCs and PPCPs, and their removal from drinking water using ozonation and ozone/hydrogen peroxide-based advanced oxidation. The paper also examines the potential threats posed by these chemicals to drinking water and public health. While these compounds are known to have adverse effects on ecosystem health, notably in the fish population, a similar link is yet to be established between ingestion of these compounds through drinking water and human health. In addition, data on the effectiveness of existing methods for the removal of these compounds are not conclusive. Further studies are required to characterize risks, and also to evaluate and optimize existing removal processes. Also concerted international effort is urgent to cut down the risk of exposure and restrain the production and marketing of toxic chemicals.


Sign in / Sign up

Export Citation Format

Share Document