Evaluation of statistical sampling for the assessment of residential consumption totals in water distribution networks

2014 ◽  
Vol 15 (1) ◽  
pp. 173-180 ◽  
Author(s):  
A. Fortunato ◽  
C. Arena ◽  
M. R. Mazzola

The paper provides insights into stratified sampling, a standard statistical technique that may be employed to assess domestic water use in water distribution networks. The basic idea is to use only a few meters to provide inference on the total water consumption of a network or of a district metered area through the knowledge of some additional stratification variables, such as household typology, size and occupants number. Since any sampling procedure assumes that the variance of the variable at stake is known, either a suitable amount of past consumption data is necessary, or a specific preliminary survey must be carried out, in order to define the sampling plan. An application with real consumption data from a small municipality in Sicily (Italy) shows that number of occupants for each household is sufficient to design an effective sampling plan and that the methodology can be successfully applied in the technical practice, thus allowing a dramatic reduction of the number of customer meters to be read in order to quantify total water consumption compared to standard practice based on the reading of all meters.

Author(s):  
Kauan Polli de Oliveira ◽  
Daniela Baonazzi Sodek ◽  
Laura Maria Canno Ferreira Fais ◽  
José Gilberto Dalfré Filho ◽  
André Luís Sotero Salustiano Martim

The design of the water distribution networks in a given region must guarantee 24-hour supply, meeting the times of greatest demand, defined as factors of peak consumption. Thus, it is important that water reaches users effectively, ensuring adequate quantity and quality for carrying out daily activities. The premise then is the average flow demanded by the population, and the fluctuations that may occur from this value, weighted from the dimensionless peak coefficients K1 (coefficient of the day of greatest consumption) and K2 (coefficient of the hour of greatest consumption). In this paper, these coefficients are calculated from both water consumption data and from the application of empirical equations. These values were compared with those suggested by the NBR 12218/2017 standard, which suggests K1 = 1.2 and K2 = 1.5 in the absence of water consumption data. However, some surveys that assessed water consumption in three regions based on water consumption data for three to four years indicated that the peak coefficients recommended by the standard may lead to undersizing of the supply network. In one of the cases assessed, the values of K1 and K2 respectively corresponded to 2.19 and 4.95. Results of two studies previously developed at the Faculty of Civil Engineering, Architecture and Urbanism of the State University of Campinas (FEC-UNICAMP) were used for the calculation based on water consumption data. These studies defined the peak water consumption coefficients for the same three regions examined by the present research: Parque Jambeiro and Parque Oziel, located in the city of Campinas (third most populous city in the State of São Paulo, with an estimated 1,204,703 inhabitants in 2019), and Jardim América II, located in the municipality of Várzea Paulista, in the interior of the State of São Paulo, based on data provided by the water provider. The analyses carried out considered that the peak water consumption factor Cp is given by the product of K1 and K2. Seven empirical equations, available in the specific literature and developed in different locations, were used. As the empirical equations were developed in different regions, the average of the results obtained through these equations was used in order to reduce the existing uncertainties, related, for example, to the socioeconomic profile and climate, parameters that vary according to the region of study. As a result, this research shows that in all the neighborhoods observed, the normative suggestion for the Cp value was below those obtained by applying the empirical equations in all the years used to calculate the coefficient. So, there was no year in which the normative reference was sufficiently adequate to describe water consumption. Furthermore, the evaluation using water consumption data resulted in a peak coefficient equivalent to 240% of the normative suggestion (2.4 times higher) whereas the empirical equations suggest the adoption of a value corresponding to 200% of the indicated value by the standard (twice as high). It was also found that the computation of Cp through empirical equations resulted in values 1.55 times higher than those obtained from the water consumption data. As the calculation of the design flow depends directly on the peak consumption coefficient, the use of smaller values leads to lower design flow and, consequently, to undersized network diameters. As a direct consequence, there are greater head losses at times of higher flow. This situation should result in a lack of water in peak consumption days and times, so as not to serve the population continuously, which is a premise of the public supply system. Future research may focus on expanding the number of regions evaluated in the comparison between different ways to calculate the peak water consumption coefficients, and it is also possible to explore the evaluation of water consumption data to determine the Cp value and the subsequent correlation with local factors such as resident population, supplied area, typical climate, among other factors, adding value to the results already existing in the specific literature, and also expanding the knowledge related to the dimensioning of water distribution networks.


Author(s):  
Francesco Lombardi ◽  
Guglielmo Silvagni ◽  
Piero Sirini ◽  
Riccardo Spagnuolo ◽  
Fabio Volpi

This paper develops a model to characterize the demand for domestic water based on its end users' usage habits. The use of individual residential appliances (bathroom sink, toilet, shower, bath, etc.) is interpreted using a probabilistic approach. The paper also applies the model to the distribution network of the municipality of Sparanise, a small city in the province of Caserta, Italy. The results of this application are compared to the real output of the city's actual water reservoir. Flow variability during the day was successfully modelled. A comparison of the simulated and recorded data on a daily level indicates the proper adjustment of the volume distribution; the peak flow rates were also comparable. The model could be a useful tool for analyzing domestic water consumption, especially in the design and management of water distribution networks. Use of the model would particularly aid the Integrated Urban Water Management Operator both in optimizing the operating pressures in the various districts’ networks and in predicting domestic water consumption when drafting its water balance documents.


2021 ◽  
Vol 14 (1) ◽  
pp. 204
Author(s):  
Shuangshuang Liu ◽  
Shuhan Gao ◽  
Wei-Ling Hsu ◽  
Yan-Chyuan Shiau ◽  
Hsin-Lung Liu

As the principal part of economic and social development, the demographic factor is the fundamental factor driving the change of water resources, and achieving the harmony of human and water has been one of the most important tasks to promote high-quality development. Based on Maslow’s hierarchy of needs theory, this article applied panel data for 19 years and employed impulse response functions and threshold models to do a mechanism analysis of the impact of population structure changes on the water consumption changes of the three main industries. The study found the following: Firstly, the urban population promotes an increase of the total water consumption, industrial water consumption, and domestic water consumption, which suppresses agricultural water consumption and shows an inverted “N” trend. Secondly, the aging population has expanded the total water consumption, and agricultural and domestic water demand, and reduced industrial water consumption. Thirdly, food consumption helps to reduce the total water consumption and agricultural water consumption, but increases the industrial water consumption and the growth rate rises. Fourthly, the increase in the proportion of agricultural employment reduces the total water consumption, and agricultural and domestic water consumption, and increases industrial water consumption. Fifthly, the total water consumption and domestic water consumption both increase with the improvement of the population education level, while the agricultural water consumption declines first and then rises. The empirical results can provide a reference for analyzing the driving mechanisms of regional water consumption changes.


Author(s):  
Wenjie Geng ◽  
Xiaohui Jiang ◽  
Yuxin Lei ◽  
Jinyan Zhang ◽  
Huan Zhao

Rapid economic and societal development increases resource consumption. Understanding how to balance the discrepancy between economic and social water use and ecological water use is an urgent problem to be solved, especially in arid areas. The Heihe River is the second-largest inland river in China, and this problem is notable. To ensure the downstream ecological water use, the “Water Distribution Plan for the Mainstream of the Heihe River” (97 Water Diversion Scheme) controls the discharge of Yingluo Gorge and Zhengyi Gorge, while the “Opinions of applying the strictest water resources control system” (Three Red Lines) restricts the water use. With the development of the economy and agriculture in the midstream, Zhengyi Gorge’s discharge cannot reach the Heihe River’s ecological water downstream. This paper is under the constraints of the “97 Water Diversion Scheme” of Heihe River and the “Three Red Lines” of the total water use control index for Zhangye County. We constructed a water resource allocation model for the midstream of Heihe River to reasonably allocate water resources in the Heihe River’s midstream and downstream. This model is divided into three parts: Establish the mathematical equation, simulate the water consumption under the different inflow conditions, and ensure each water user’s demand. The result showed that if we fail to confine total water consumption in the midstream, through the reasonable allocation of water resources, the real water use and water consumption of the middle Heihe River will be greater than the “97 Water Diversion Scheme” and the “Three Red Lines.” If we confine water consumption, they will be within the “97 Water Diversion Scheme” and the “Three Red Lines,” at the same time, they can reach the downstream of the Heihe River’s ecological water. Besides, under the premise of satisfying the economic water and ecological water downstream of the Heihe River, returning farmland to wasteland and strengthening water-saving measures will improve water efficiency and be more conducive to allocating water resources.


2020 ◽  
Vol 0 (6) ◽  
pp. 13-19
Author(s):  
Guzel Gumerova ◽  
Georgiy Gulyuk ◽  
Dmitry Kucher ◽  
Anatoly Shuravilin ◽  
Elena Piven

Data of long-term researches (2015–2018) in southern forest-steppe zone of the Republic of Bashkortostan, is justified theoretically and experimentally the mode of irrigation of potatoes on leached chernozems of unsatisfactory, satisfactory and good ameliorative condition of irrigated lands. For the growing periods of potatoes with different heat and moisture supply, the number of watering, the timing of their implementation, irrigation and irrigation norms are established. On lands with unsatisfactory meliorative state the number of irrigation depending on weather conditions of potato vegetation period varied from 0 to 3 (1.5 on average) with average irrigation norm – 990 m3/ha. With satisfactory meliorative state of lands the number of irrigation on average increased from 0 to 4 (2.3 on average) with irrigation norm – 1305 m3/ha. On lands with good meliorative state the number of irrigation was the highest – from 1 to 5 (3 on average) with average irrigation irrigation norm is 1653 m3/ha. It was noted that in the dry periods of potato vegetation the greatest number of watering was carried out (3–5 watering), and in the wet periods (2017) watering was not carried out except for the area with a good reclamation state, where only one irrigation was carried out by the norm of 550 m3/ha. Water consumption of potato was studied in dynamics as a whole during the growing season and the months of the growing season depending on weather conditions of vegetation period and land reclamation condition of irrigated lands, as well as in the control (without irrigation). The lowest total water consumption was in the area without irrigation and averaged 226.8 mm. In irrigated areas, its values increased to 319-353.4 mm. The average daily water consumption varied from 2.12 to 3.3 mm. The highest rates of potato water consumption were observed in June and July, and the lowest – in May and August. In the total water consumption of potatoes on the site without irrigation, the largest share was occupied by atmospheric precipitation and in addition to them the arrival of moisture from the soil. Irrigation water was used in irrigated areas along with precipitation, the share of which was 30.2–46.1 %.


Sign in / Sign up

Export Citation Format

Share Document